3D Reconstructed Human Airway Models: Effect of Acclimation Conditions on Biomarker and Inflammatory Response Following Tissue Challenge

Holger P. Behrsing, Ph.D. Principal Scientist Inhalation Toxicology Program

Institute for In Vitro Sciences, Inc. (IIVS)

- 1. Science Practical Knowledge
- 2. Education Dissemination of Information
- 3. Outreach Advocacy for the Methods

Technical Workshop:

"In Vitro Models for Goblet Cell Hyperplasia, Mucus Production, and Ciliary Beating Assays"

Supported by FDA-CTP R13 grant

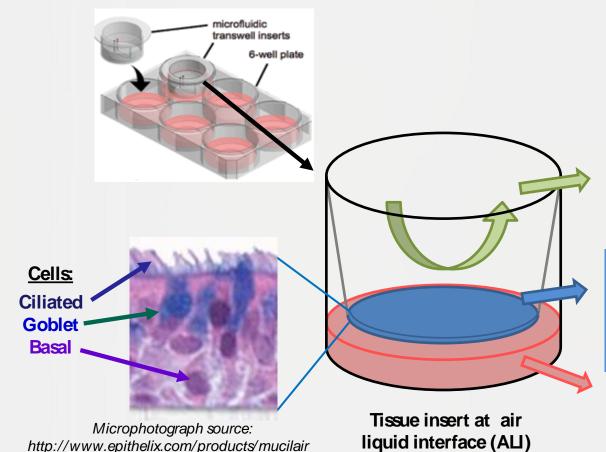
June 16-18, 2015 Gaithersburg, MD

• IIVS has had substantial involvement in numerous validation studies or method evaluations (ECVAM, ICCVAM, OECD expert groups)

Institute for In Vitro Sciences, Inc. (IIVS)

Respiratory Toxicology Program:

- Developed to meet the growing demand for the assessment of inhaled or other pulmonary toxicants:
 - Household products, personal care products, fragrances, pharmaceuticals
 ...and now tobacco products such as MRTPs (e.g. E-cigarette aerosols)


http://vapelifemagazine.com/wpcontent/uploads/2015/03/vape-bar-610x250.jpg

- Whenever possible, we work exclusively with *in vitro* models of human tissue origin
- Experience with monolayer cultures, but also with complex 3D models such as precision-cut lung slices and reconstructed airways grown at the air-liquid interface (ALI)

IIVS' Respiratory Toxicology Program

Human reconstructed 3D models (e.g. EpiAirway™ or MucilAir™)

Apical Rinse (lavage fluid)

- Inhalation exposures
- Surfactant changes
- Leakage/signaling marker responses
 (LDH, cytokines, chemokines)

Lysate (<u>tissue</u>)

- Tissue responses (multicellular)
- -omics, biomarker regulation
- Histology specialty stains, morphology changes

Medium (blood)

- Systemic exposures
- Leakage/signaling marker responses (LDH, cytokines, chemokines)

Why EpiAirway Characterization?

- Achieve better understanding of tissues
- Test variability across tissues
- Inconsistent response to reference chemicals

Medium IL-8

(all untreated)

Eg. baseline values with a heat map of values - high variability

12867	13637	13252
13173	10014	11593
15457	9930	12694
12989	19292	16140
16855	11671	14263
6514	11089	8801
7248	5458	6353
9545	8397	8971
9627	9986	9807

@24hr

10873
15131
12230
20980
17550
12697
9097
8966

@48hr

Medium IL-6 (untreated) @48hr

197
244
473
146

Study Objectives

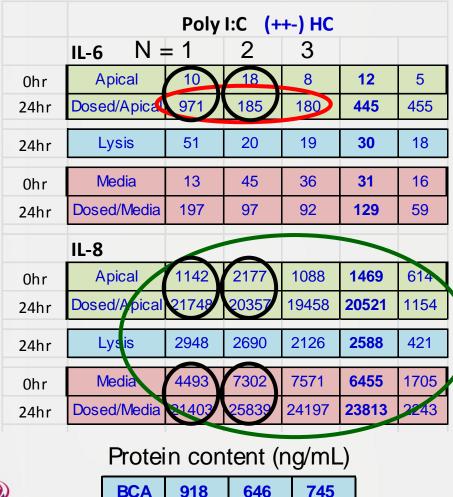
- 1. Evaluate marker variability across replicate tissues and the effect of normalizing to protein
- 2. Assess acclimation: impact on tissue response
 - a) Inclusion of anti-inflammatory agent (2 µM hydrocortisone; HC)
 - b) 24 vs 48hr acclimation duration
- 3. Expose tissue to two **pulmonary toxicants** and assess response by **sampling all compartments**
 - a) Lipopolysaccharide (LPS) at 5 µg/mL
 - Poly I:C (Polyinosinic:polycytidylic acid; viral simulator) at 15 µg/mL

1. Marker Variability and Normalization

	Test	Tuno	pro	tein (ng/	Average	۲D	
TEST ARTICLE	Number	Туре	1	2	3	Average	S.D.
Neg. Ctrl HC+	2	BCA	656	636	1273	855	362

	24hr	2	Media	128.2	78.9	76.2	94.5	29.3
	48hr	2	Media	61.3	41.2	48.6	50.4	10.2
IL-6	24hr	2	Apical	57.8	39.8	27.8	41.8	15.1
	48hr	2	Apical	51.8	44.8	33.8	43.4	9.1
	48hr	2	Lysis	15.9	10.6	11.9	12.8	2.8

	24hr	2	Media	169.7	112.7	244.8	175.7	66.2
	48hr	2	Media	134.1	23.9	66.5	74.8	55.5
	24hr		Apical	153.1	41.2	73.1	89.1	57.6
11-10	48hr	2	Apical	195.8	131.7	105.1	144.2	46.6
	48hr	2	Lysis	176.9	2.7	-15.0	54.8	106.1


IL-6 and IP-10 values are pg/mL

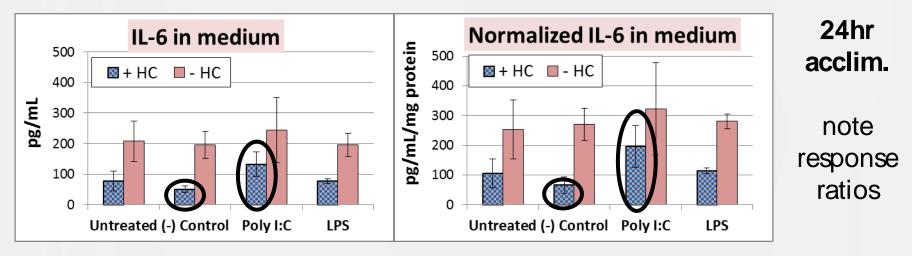
- Tissue protein values matched expected values, but had up to 2fold differences across inserts
- Protein levels did not correspond with baseline or induced marker values in any compartment

1. Marker Variability and Normalization

Eg. "rogue" responses following exposure

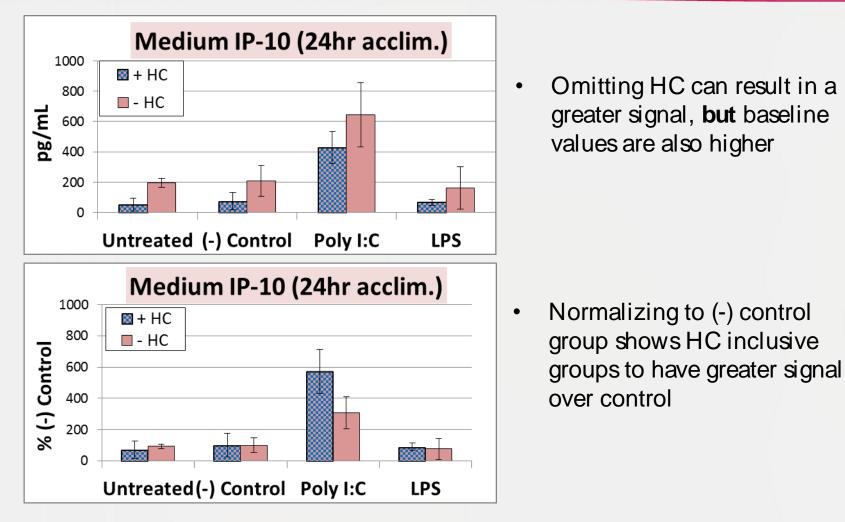
Disparity in marker values not consistent across markers in replicate groups

Rep #1 has much higher IL-6 values than the remaining 2 reps in its group (<u>post</u> <u>exposure</u>) baseline values don't reflect this

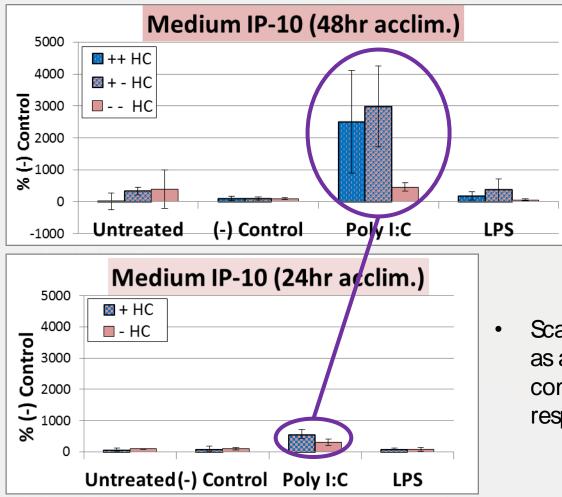

For IL-8, no substantial difference is seen across replicates

Cannot use a pretreated tissue baseline as reference

1. Marker Variability and Normalization


Protein Normalization: possible increase in relative responses, but also CV

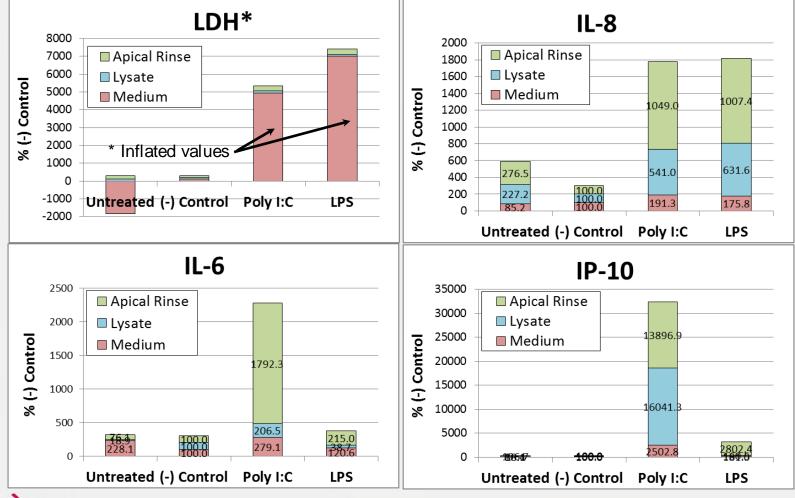
- The same trend was seen for the 48hr acclimation group
- All acclimation paradigms showed same effect and it was apparent for all biomarkers sampled
- Normalization diminished significant differences of treated groups vs controls


1. Assess acclimation: Inclusion of HC

Conclusion: Inclusion of HC lowers IP-10 baseline levels & elicits greater response over (-) control. This was consistently seen across markers assayed.

1. Assess acclimation: 24hr vs 48hr

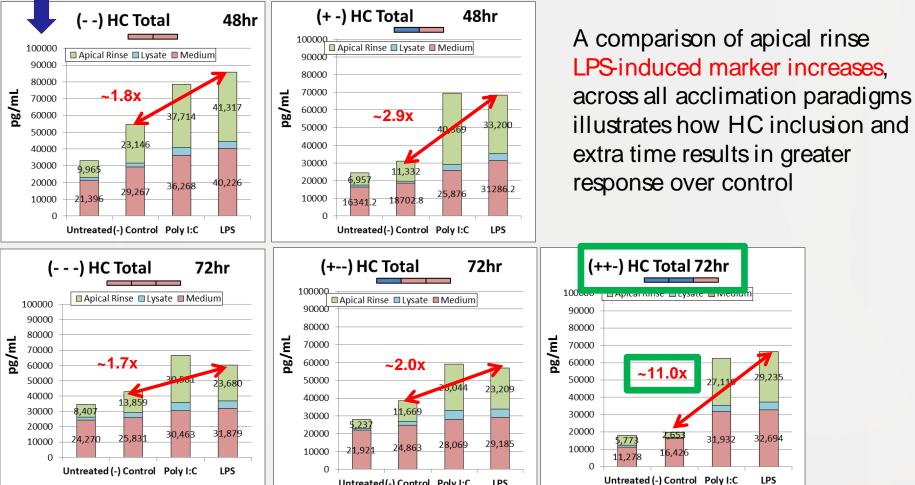
48hr acclimation also shows HC inclusive groups having greatest response


 Scaling the 24hr acclimation as above allows a direct comparison of relative response

IIVS

Conclusion: 48hr acclimation typically resulted in a substantially greater response over control. This was <u>consistently seen across markers</u> assayed.

2. Expose tissue to two pulmonary toxicants and assess response by sampling all compartments


Biomarker results of the 48hr HC inclusion group, all expressed as % of (-) Control

* Medium LDH not evaluable as % Control due to very low baseline values

2. Expose tissue to two pulmonary toxicants and assess response by sampling all compartments

(--) HC group had greatest cumulative IL-8 levels, but also high baseline control

Untreated(-) Control Poly I:C LPS

2. Expose tissue to two pulmonary toxicants and assess response by sampling all compartments

Fold Change over Negative Control (all 48hr HC groups)

All data normalized to sampling volume

	LDH		IL-6		IL-8		IP-10			
	Poly I:C LPS		Poly I:C	LPS	Poly I:C	LPS	Poly I:C	LPS	AVE	SD
Apical Wash	2.8	2.9	17.9	2.1	10.5	10.1	139.0	28.0	26.7	46.2
Lysate	1.1	1.1	3.2	1.3	5.4	6.3	160.4	1.6	22.6	55.7
Medium	NE*	NE*	1.3	1.2	1.9	1.8	25.0	1.8	5.5	9.6

* Not Evaluable - baseline values very low

- Apical compartment is always yields greater marker quantities than basal (medium) compartment
- Tissue lysate typically also has greater values, but can be used for histology

NOTE: both Poly I:C and LPS demonstrate distinct marker expression patterns in the apical compartment but not necessarily in the medium

General Conclusions

- Variability of marker levels was pervasive in this pilot study
 - Protein normalization nor the use of a tissue-specific pretreatment baseline mitigated variability or establishing difference from controls
- The 48hr acclimation period, with the inclusion of HC produced greater responses over control to tissue challenge
- The apical compartment consistently yielded high marker values, much greater than those found in medium

Question:

- 1. Are greater marker quantities in apical compartment due to exposure location??
- 2. Should we expect compound-specific marker "signatures" when obtaining datasets for multiple markers such as inflammatory mediators

Recommendations for Model Use

Methods:

- Acclimate for 48hr (or longer?) and include an antiinflammatory agent until ready for use
- Consider Apical wash a good candidate for detecting biomarker change
 - Look for "signatures" that may help differentiate chemicals or products
- The use of tissue itself would be better suited to examine histological changes
 - Protein content (or another marker e.g. total DNA) is unlikely to be helpful

Contact IIVS for more Information!

Questions?

Workshop Report:

"In Vitro COPD Models for Tobacco Regulatory science"

Upcoming IIVS workshop:

"In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products" April 4-8, 2016 Bethesda, MD

www.iivs.org

Holger Behrsing, Ph.D.: <u>hbehrsing@ivs.org</u>

