Etiology of COPD and In Vitro Models

Holger P. Behrsing, Ph.D. Principal Scientist Inhalation Toxicology Program

Outline: Etiology of COPD

Part 1. Overview of COPD

- 1. Definitions of COPD
- 2. Medical manifestations/disease states encompassed
- 3. Risk factors, exacerbations, & comorbities
- 4. Responses to tobacco smoke inhalation
- 5. Examples of bronchitis & emphysema
- 6. Summary of COPD etiology

COPD: Historical Definition

Patients afflicted with COPD can have <u>one or more symptoms of</u> <u>chronic bronchitis, emphysema, or both</u>. These individuals have increased susceptibility to infection and air pollution.

- Chronic bronchitis
 - Excessive mucous production
 - Airway wall thickening
 - Epithelial squamous metaplasia
 - Leukocyte recruitment
- Emphysema
 - Airspace enlargement
 - Parenchymal destruction
- Small airways disease (Prof. Dr. Dirkje S. Postma)
 - A collection of a wide variety of diseases affecting small airways

COPD: Current Definitions

Global Initiative for Chronic Obstructive Lung Disease (GOLD)

"a common preventable and treatable disease characterized by persistent <u>airflow limitation</u> that is <u>usually progressive</u> and associated with an enhanced <u>chronic inflammatory</u> <u>response</u> in the airways and the lungs to <u>noxious particles or gases</u>. Exacerbations and comorbidities contribute to the overall severity in individual patients."

American Thoracic Society (ATS)/European Respiratory Society (ERS)

"Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by <u>airflow limitation</u> that is not fully reversible. The airflow limitation is <u>usually</u> <u>progressive</u> and is associated with an abnormal <u>inflammatory response</u> of the <u>lungs to</u> <u>noxious particles or gases</u>, primarily caused by cigarette smoking. Although COPD affects the lungs, it also produces significant systemic consequences."

• Progressive (usually) airflow limitation in airways/lungs due to noxious particles or gases and associated with inflammatory response

COPD: Risk Factors, Exacerbations, & Comorbidities

Risk Factors

- Host:
 - Genetic
 - α_1 antitrypsin deficiency (Decramer 2012),
 - numerous other genes implicated (D-G&M 2014;)
 - Gender (male dominated (D-G&M 2014)
 - Airway hyperreactivity, IgE and asthma

• Exposure:

- Smoking (main risk factor: active and passive)
- Socio-economic status
- Occupation
- Environmental pollution
- Perinatal events and childhood illness
- Recurrent bronchopulmonary infections
- Diet

Exacerbations (>70% bacterial or viral infections)

Comorbidities: Cardiovascular disease, Muscle weakness, Hypertension, Osteoporosis, Lung cancer, Anxiety/depression

Schematic of Tobacco-COPD events

http://www.nature.com/nri/journal/v8/n3/full/nri2254 Nature Reviews Immunology (March 2008) Peter J. Barnes

Tobacco Smoke Exposure: Changes in Lining of the bronchus

COPD: Chronic Bronchitis, Emphysema & Small Airways Disease

http://www.livweltherapeutics.com/area-copd.html

Small Airways Disease:

Include a wide variety of diseases often including a form of bronchiolitis

- Bronchiolitis = <u>a variety of inflammatory</u> <u>conditions</u> involving the small airways
- Bronchiolar and peribronchiolar inflammation may be focal or diffuse and may or may not be associated with scarring and bronchiolar metaplasia.
- Bronchiolar mucosa may undergo bronchiolar, squamous, or goblet cell <u>metaplasia</u>.

Timothy Craig Allen (2010) Pathology of Small Airways Disease. Archives of Pathology & Laboratory Medicine: May 2010, Vol. 134, No. 5, pp. 702-718.

http://www.archivesofpathology.org/doi/full/10.1043/1543-2165-134.5.702

Chronic Bronchitis

http://www.livweltherapeutics.com/area-copd

Comparison of airway features in a healthy individual and in a patient with chronic obstructive pulmonary disease

A: Normal airway.

B: In COPD, <u>airways are narrowed</u> by <u>infiltration of inflammatory cells</u>, <u>mucosal hyperplasia</u>, and <u>deposition of connective tissue</u> in the peribronchiolar space.

Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009; **4:** 435–59.

Emphysema

http://www.livweltherapeutics.com/area-copd

Comparison of airway features in a healthy individual and in a patient with chronic obstructive pulmonary disease

A: Normal airway.

B: Emphysema: <u>Septal collapse</u> is evident. These changes are permanent and cause a <u>decrease in number of alveoli</u>, an <u>increase in size of alveoli</u>, and most importantly, a <u>net decrease in the surface area</u> available for gas exchange.

http://www.headingfortheexits.com/emphsema-can-kill-you-because-planes-fly/

Chronic Obstructive Pulmonary Disease (COPD)

Initiation, Progression, & Manifestation of COPD

Initiating event:	Tissue Response:	Tissue Effects:	Pulmonary Effects:	Clinical
Tobacco exposure or	1. Cytokines/chemokines	1. Ciliary dysfunction	1. Reduced lung elasticity	manifestations:
other toxic insult to lung epithelium	2. Increased integrin and	2. Increased mucous	2. Reduced airflow	1. Chronic bronchitis
1. Ligand-receptor	adhesion molecule expression	secretion	3. Airspace enlargement	2. Emphysema
interactions	3. Monocyte recruitment	3. Fibroblast activation	4. Small airway	3. Small Airways Disease
2. Intracellular response	(persistent influx of neutrophils)	4. Goblet cell hyperplasia	remodeling	4. Increased susceptibility to infection and air pollutants
3. Oxidative stress	4. Protease/antiprotease	5. Bronchial epithelial squamous metaplasia	5. Vascular remodeling	
4. Initiation of autocrine,	imbalance	6. Narrowing of airways	6. Hyperinflation	COPD:
paracrine, and endocrine signaling	5. Adverse cellular ion	7. Collagen deposition	7. Chronic inflammation	
5. Cellular damage	homeostasis-dehydration	8. Parenchyma/tissue	8. Fibrosis	Progressive (usually) airflow limitation in
	6. Oxidative stress	destruction		airways/lungs due to noxious particles or gases

9. Injury/repair cycling

and associated with inflammatory response

IIVS

7. Inflammation

Outline: In Vitro Models

Part 2. Overview of In Vitro Pulmonary Models

- 1. Introduction to In Vitro/Ex Vivo models
- 2. Types of models currently used in mainstream research
 - Cell lines
 - Primary cells
 - 3D airway cultures
 - Ex vivo tissue
- 3. Important considerations in choice of model
- 4. Upcoming Technologies

In Vitro/ex vivo Models

- A host of in vitro/ex vivo pulmonary models are available
- Used for a multiplicity of applications including:
 - Drug development
 - Efficacy
 - Adverse effects
 - Assessment of environmental toxicants
 - Personal care & cosmetics product development
 - Etc.
- For this workshop, a focus on models and assays that have demonstrated fit for purpose
 - Suitability in detecting one or more components in COPD etiology
 - Commercially available

In Vitro Models for COPD

- 1. Cell lines: immortalized cells
 - Immature, transformed or cancer cells that have the capacity to expand and (possibly) mature to some degree
- 2. Primary cells
 - Derived from normal or diseased tissues but may not have capacity to expand greatly in number (e.g. limited supply)
- 3. 3D cultures/tissues
 - Reconstructed airway epithelium
- 4. Ex vivo tissues
 - Precision cut lung slices (PCLS)
- 5. New technologies:
 - Lung on a Chip
 - Wyss Institute: Dr. Donald Ingber
 - RPI & UNC

1. Cell Lines

Advantages:

- Economical means to generate cell based data
- Typically very reproducible
- Usually straightforward to use and easy to culture
- Can be easily expanded, cryostored, and banked for later use

Disadvantages:

- Not considered as physiological as primary or 3D models
- Are transformed or derived from cancerous tissue
- Passage "drift" can occur

A549 cell line http://www.invitro.de/bildergalerie.html

E.g. H292: mucoepidermoid carcinoma origin
BEAS-2B: adenovirus <u>transformed</u> bronchial epithelial cell line
NCI-H441: lung adenocarcinoma epithelial cell line
A549: adenocarcinoma of alveolar origin (lack of tight junctions)

The Cell Line NCI-H441 Is a Useful in Vitro Model for Transport Studies of Human Distal Lung Epithelial Barrier Johanna J. Salomon,† Viktoria E. Muchitsch,† Julia C. Gausterer,† Elena Schwagerus,† Hanno Huwer,‡ Nicole Daum,§ Claus-Michael Lehr,§ and Carsten Ehrhardt†,*

2. Primary Cells

Advantages:

- Not immortalized
- More representative of individuals in population
- Can be expanded, cryo-stored, and banked for later use, but donor variability impacts the quality of tissue

Disadvantages:

- Not immortalized and can be expensive
- Reproducibility is variable across different donors
- Can be difficult to culture and utilize

Cell origins:

- Tracheobronchial Epithelia
- Alveolar Epithelia
- Cells of disease states available

E.g.

- Normal human bronchial epithelial cells (NHBE)
- NHBE + fibroblast co-cultures

Human bronchial-tracheal epithelial cells (Lonza)

http://www.lonza.com/products-services/bioresearch/primary-cells/human-cells-andmedia/airway-cells-and-media/nhbe-normalhuman-bronchial-tracheal-epithelial-cells.aspx

3. 3D Epithelial Cultures

- 3D cultures can be created by expanding and differentiating primary epithelial cells at an air-liquid interface (ALI)
- Exposure to air on apical side of cultures, and medium on basal (filter) side allows for pseudo-stratification of cell layers, yielding multiple cell types

Advantages:

- More physiologically relevant
- More representative of individuals in population
- Allows study of cell types/functions that are not available in 2D models (e.g. ciliary beating)

Disadvantages:

- Are relatively expensive compared to 2D models
- Reproducibility is variable across different donors
- Requires multi-week culture for product maturation

ciliated & secretory cells -

basal cells \rightarrow

filter membrane

4. Ex Vivo Lung Tissues: PCLS

- Lung slices are created from whole lungs by inflating with agarose solution, coring gelled tissues, and slicing cores in a precision slicer
- PCLS (typically ~300-1000 µm thickness) sliced from cores can be cultured using ALI insert, roller drum method, or rocking platform
- PCLS can be cultured for days or weeks and are used for acute or chronic exposures and/or evaluation

- Most (?) physiologically relevant of non-whole organ ex vivo models
- More representative of individuals in population
- Allows study of cell types/functions that are not available in other models
 - E.g. macrophages, airway contractility, etc.

Disadvantages:

- Availability of high quality tissue is infrequent, highly variable quality across donors
- Reproducibility is variable across different donors
- Labor intensive setup procedure by well trained staff required

Credit: BASF/Fraunhofer http://www.item.fraunhofer.de/en/business_ units_new/pre-clinical_pharmacology/Exvivo_methods.html

Some Important In Vitro Model Considerations

- Cost
- Reproducibility
- Ease of use, accessibility
- Interlab transferability
- Endpoints modeled
- Tissue origin
 - If Human, how well does it translate to whole body?
 - If non-human, how well does it extrapolate to human?
- Amenable to high throughput
- Etc....

E.g. Inflammation and Oxidative Stress

		Cell	Primary	3D	Ex vivo
	Marker	Lines	cells	Tissue	Tissue
Inflammation	Cytokines /Chemokines	х	x	х	х
	Nitric Oxide	?	X	Х	X
	Prostaglandins	?	x	х	х
	Proteases			Х	Х
	Activated macrophages				x
	Neutrophil recruitment				
Oxidative stress	ROS	Х	X	Х	Х
	Glutathione	Х	X	Х	Х
	Lipid Peroxidation	х	x	х	x

Upcoming Technologies: E.g. Lung on a Chip

•

- <u>Wyss Institute</u> at Harvard has developed "breathing" human lung chip that <u>mimics airflow and bloodflow</u>
- Introduction of bacteria to lung cells triggers <u>white blood cell</u> <u>translocation</u> through porous membrane layer

Researchers mimic pulmonary edema in lung-on-a-chip

The Wyss Institute's human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. In the current study, when researchers applied the cancer drug IL-2, fluid from the bottom of the chip entered the air channel on the top, and the blood clotted -- mimicking what happens when humans get pulmonary edema. Further, when they turned on the vacuum to simulate breathing, the fluid leakage was much worse -- adding new insight to what scientists understand about this life-threatening condition.

http://wyss.harvard.edu/viewpage/404/

- Researchers at <u>RTI International</u>, in collaboration with the <u>University of North Carolina at Chapel Hill</u>, have developed a new lung-on-chip microdevice
- The microdevice includes <u>multiple vertically stacked</u> <u>cellular layers</u> that mimic the structure of the airway tissue.

RTI's lung-on-a-chip emulates the multilayer airway tissue microarchitecture. In this picture, dyes are flown in the three vertically stacked compartments separated by transparent membranes (shown by the dotted rectangle).

http://www.rti.org/newsroom/news.cfm?obj=5 03D8210-E344-7120-553A0AD769F494B4

Etiology of COPD and In Vitro Models

Thank you!

Helpful references:

COPD

- Jeffery PK (2000) <u>Comparison of the structural and inflammatory features of COPD and asthma.</u> Giles F Filley Lecture *Chest* 117: 251S–260S.
- Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343:269–280.
- van den Berge, M. et al. (2011) Small Airway Disease in Asthma and COPD, Clinical Implications *Chest* 2011;139(2): 412–423

In Vitro Pulmonary Models

- BeruBe, K. et al. (2009) In Vitro Models of Inhalation Toxicity and Disease The Report of a FRAME Workshop ATLA — Alternatives to Laboratory Animals, Vol. 37, No. 1, 02.2009, p. 89-141.
- Jason Adamson, Linsey E Haswell, Gary Phillips and Marianna D Gaça (2011). <u>In Vitro Models of Chronic Obstructive Pulmonary Disease (COPD)</u>, *Bronchitis*, Dr. Ignacio MartÃn-Loeches (Ed.), ISBN: 978-953-307-889-2, InTech, Available from: http://www.intechopen.com/books/bronchitis/in-vitro-models-of-chronicobstructive-pulmonary-disease-copd

