
The NociOcular Assay: A Novel Assay Looking at TRPV1 Channel Activity for Eye Sting Predictions Webinar

March 13, 2014 10am

Presenters:

Dr. Anna Forsby Dr. Neena Tierney Dr. Kimberly Norman University of Stockholm Johnson & Johnson IIVS

- Anna, Neena, and Kim will be available for questions at the conclusion of the webinar.
- Answers to questions and copies of the slides will be sent to participants within a week.

The NociOcular Assay: A Novel Assay Looking at TRPV1 Channel Activity for Eye Sting Predictions Webinar

March 13, 2014 10am

Presenters:

Dr. Anna Forsby Dr. Neena Tierney Dr. Kimberly Norman University of Stockholm Johnson & Johnson IIVS

- Anna, Neena, and Kim will be available for questions at the conclusion of the webinar.
- Answers to questions and copies of the slides will be sent to participants within a week.

Why does soap sting in the eyes?

Anna Forsby, PhD

Associate professor, senior scientist

2014-04-03

Nociceptors...


```
Gover, et al. J.Neurosci, 23, 2003
```

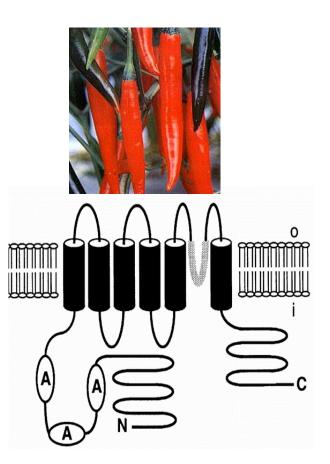
Are polymodal free ending afferent nerve fibres originating from dorsal root ganglia and trigeminal nerves

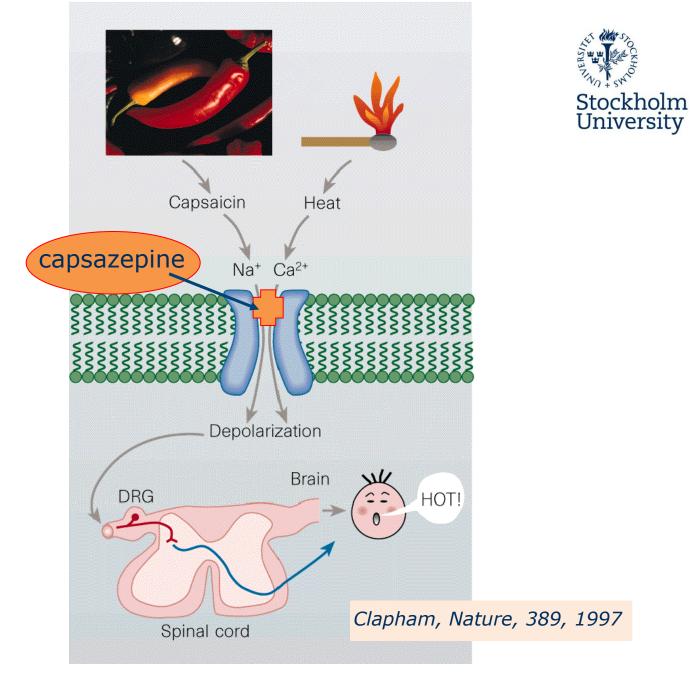
Express receptors responding to potentially damaging stimuli by inducing pain in order to prevent tissue damage

Promote inflammatory states in the tissue such as pain, swelling and redness

Cornea and conjunctiva are innervated by afferent C-fibre neurons originating from the trigeminal nerve

Vanilloid Receptor, Transient Receptor Potential (TRPV1)


Stockholm University


- The "capsaicin receptor"
- Expressed in polymodal nociceptors; afferent sensory C-fibres originating in dorsal root ganglia and the trigeminal nerve.
- Innervating conjunctiva and cornea.
- Releases Ca²⁺ (and Na⁺) into the cytoplasm when gated by:
 - Capsaicin (and other chemicals)
 - Inflammatory mediators

Acids

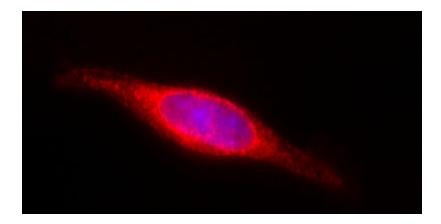
Heat (>43°C)

 Promotes neurogenic inflammation by local release of Substance P and Calcitonin Gene Releasing Peptide.
2014-04-03

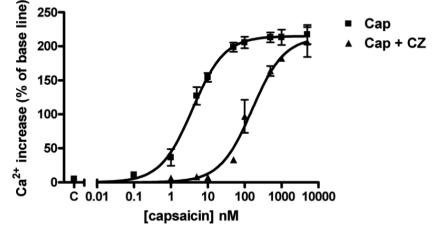
2014-04-03

Is activation of the TRPV1 ion channel a common mode of action for chemically induced eye nociception?

SH-SY5Y Human neuroblastoma cells


E

0


0

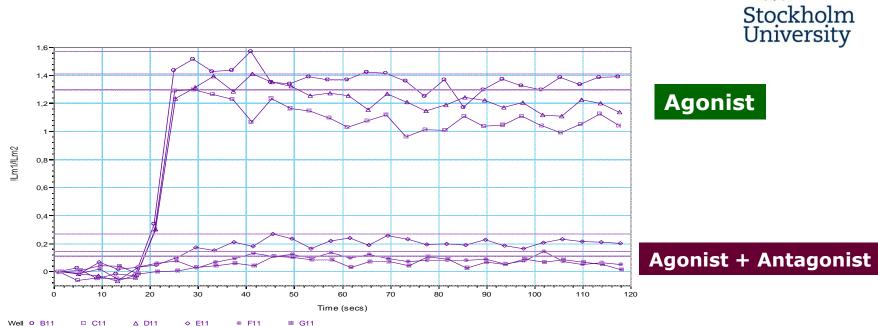
SH-SY5Y/TRPV1 sensory neuron

Human neuroblastoma cells with stable expression of TRPV1. Anti-rat TRPV1 visualised by goat-antirat IgG-conjugated by Alexa fluo red 568. Nucleus stained with Hoechst.

Capsaicin-induced concentration-effect curve of Ca²⁺transients in TRPV1-SH-SY5Y cells as measured with the Ca²⁺-binding and fluorescent probe Fura-2/AM. (\blacksquare) Capsaicin-induced Ca²⁺ increase from basal level (•) 10 µM capsazepine was added to the wells 15 min before capsaicin addition and measurements. Plots represents 3-5 individual experiments and SEM.

Semi-HTS of intracellular Ca²⁺ measurements

FlexStation II, Molecular Devices

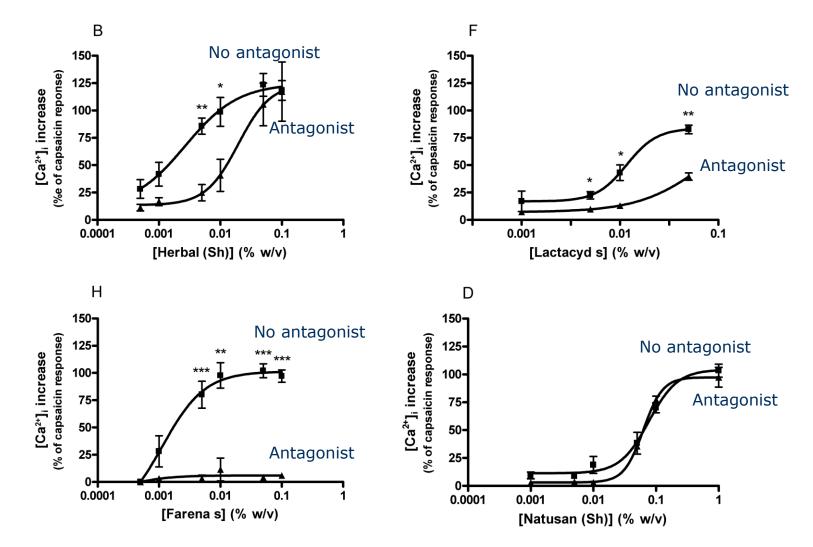

Intracellular free Ca²⁺ concentration by Fura-2 fluorescence

Ratio: Ex 340 nm (Ca²⁺-Fura-2)/ 380 nm (free Fura-2)

Em: 510 nm

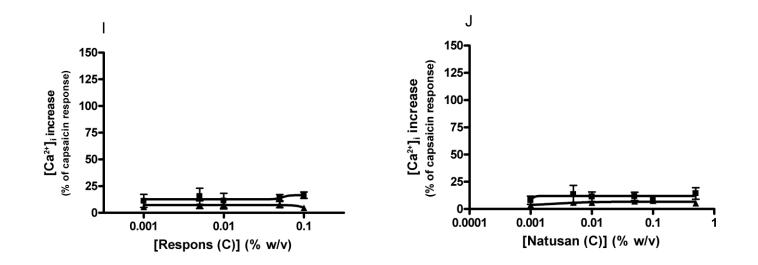
2014-04-03

Intracellular free Ca²⁺ concentration by Fura-2 fluorescense


Peak 1,571 1,296 1,410 0,269 0,143 0,109

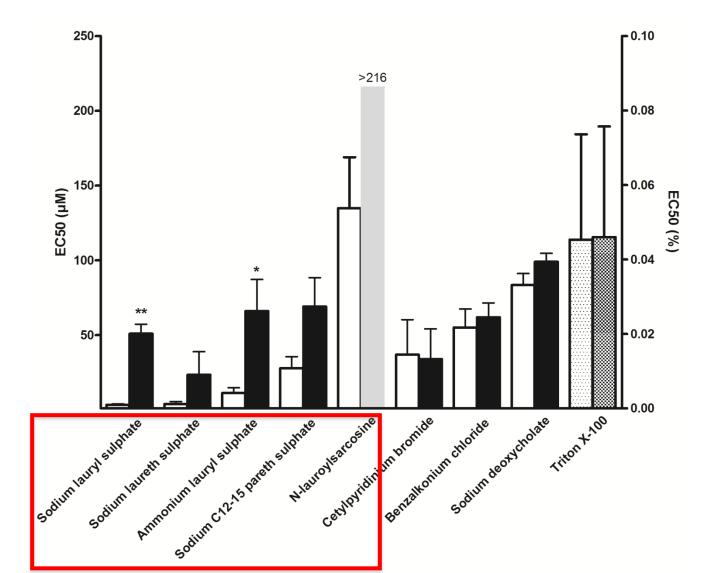
Ratio: Ex 340 nm (^{Ca2+ -bound}Fura-2)/ 380 nm (^{free}Fura-2), Em 510

2014-04-03


Selected hygiene detergents

Hair conditioner

What compound in shampoo activates TRPV1?



- Water
- Sodium lauryl sulfate (SLS)
- Sodium laureth sulfate (SLES)
- Ammonium lauryl sulfate
- Cocamidopropyl betaine
- Citric acid
- Other...

EC₅₀-values of compounds

-

Ionic properties	TRPV1
	agonist
Anionic, linear aliphatic sulphate	Yes
Anionic, linear aliphatic	Yes
Anionic	No
Anionic	No
Zwitterionic	No
Cationic	No
Cationic	No
Non-ionic	No
Non-ionic	No
	Anionic, linear aliphatic sulphate Anionic, linear aliphatic sulphate Anionic, linear aliphatic sulphate Anionic, linear aliphatic sulphate Anionic, linear aliphatic Anionic Anionic Anionic Zwitterionic Cationic Cationic Non-ionic

NociOcular Study Background And Test Products

Neena K Tierney, PhD

Associate Director, Fellow Medical & Clinical Affairs

ohnson ₄Johnson

Safety Assessment of Personal Care Products

- As part of the safety assessment of products that are designed to be used in or around the eyes, such as cosmetics, facial moisturizers, and sunscreens, the evaluation of ocular irritation potential is of primary importance.
- For baby personal care products such as shampoo or bath products, where the product can inadvertently come into contact with the baby's eyes, testing for ocular irritation, including erythema, lacrimation, and stinging, is conducted to ensure the absence of irritation and pain associated with their use.

Background/Rationale

The TRPV1 channel is a well characterized pain-inducing receptor that is expressed in sensory nociceptors which can be activated by chemical stimuli. Corneal and mucosal tissue in conjunctiva are rich in innervations which express TRPV1 channels

Our hypothesis is that TRPV1 may be a general mediator of chemically induced pain on the surface of the eye

No study had demonstrated the ability of *in vitro* assay to predict the human sting potential of personal care products which may come in contact with the eyes

An in vitro assay capable of identifying the eye sting potential of personal care products would be very beneficial as a pre-clinical screening tool. Also, since in vitro testing can be more readily conducted, it can be used as a tool to advance the understanding of the relative contributions to ocular sting of various ingredients within personal care products.

Test Products

We sought to test our hypothesis by evaluating the eye sting (pain) potential of 19 baby shampoos which had been previously evaluated in human clinical eye sting tests

Baby shampoo and bath test products were formulated with standard surfactants, conditioning agents, thickening agents including polymers, preservatives, fragrances, pH adjusters, and in some cases other skin benefit agents.

It is well understood that for certain combinations and at high levels, some surfactants, conditioning agents, preservatives, and fragrances can result in ocular sting or pain. Example ingredients within these test products included sodium laureth sulfate, trideceth sulfate, cocamidopropyl betaine, sodium lauroamphoacetate, cocoglucoside, polyquaternium-10, PEG 80 sorbitan laurate, sodium benzoate, quaternium-15, and phenoxyethanol.

NociOcular Study Results and Next Steps

Kimberly Norman, Ph.D., DABT

- Mild eye irritation may be assessed by sensitive in vitro assays including:
 - Neutral red uptake assay (NRU)
 - Cytosensor microphysiometer assay
 - Transepithelial permeability assay (TEP)
 - EpiOcular ™ assay
- None of these assays have been shown effective as sensitive biomarkers for stinging sensation
- 12 baby formulations evaluated in these assays and human clinical sting test

Eye Irritation Assays

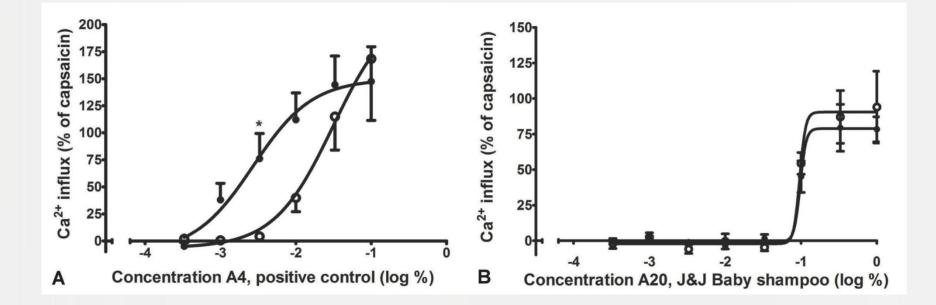
Product	Human Ocular	EpiOcular	Cytosensor	NRU	TEP
	Instillation Test	ET ₅₀	MRD ₅₀	NRU ₅₀	EC ₅₀
	for Sting (Yes/No)	(hours)	(mg/mL)	(µg/mL)	(%)
A1	Yes	7.8	3.99	103	2.29 <u>+</u> 1.35
A2	No	11.6	2.36	29.8	3.96 <u>+</u> 0.053
A3	No	22.1	3.72	106	NA
A4*(+)	Yes	<1	0.519	16.2	NA
A5	No	11.4	2.05	41.6	4.31 <u>+</u> 0.59
A6	No	3.0	1.31	53.0	NA
A8	No	9.6	2.17	45.2	NA
A12	No	9.0	2.88	44.3	NA
A13	Yes	18.6	5.19	195	6.17 <u>+</u> 0.59
A18	No	12.0	2.84	132	3.47 <u>+</u> 0.81
A19	Yes	3.3	1.62	55.1	3.11 <u>+</u> 0.38
A20 ¹ (-)	No	8.3	2.87	80.3	4.19 <u>+</u> 1.25

Eye Irritation Assays

Product	Human Ocular	EpiOcular	Cytosensor	NRU	TEP
	Instillation Test	ET ₅₀	MRD ₅₀	NRU ₅₀	EC ₅₀
	for Sting (Yes/No)	(hours)	(mg/mL)	(µg/mL)	(%)
A1	Yes	7.8	3.99	103	2.29 <u>+</u> 1.35
A2	No	11.6	2.36	29.8	3.96 <u>+</u> 0.053
A3	No	22.1	3.72	106	NA
A4*(+)	Yes	<1	0.519	16.2	NA
A5	No	11.4	2.05	41.6	4.31 <u>+</u> 0.59
A6	No	3.0	1.31	53.0	NA
A8	No	9.6	2.17	45.2	NA
A12	No	9.0	2.88	44.3	NA
A13	Yes	18.6	5.19	195	6.17 <u>+</u> 0.59
A18	No	12.0	2.84	132	3.47 <u>+</u> 0.81
A19	Yes	3.3	1.62	55.1	3.11 <u>+</u> 0.38
A20 ¹ (-)	No	8.3	2.87	80.3	4.19 <u>+</u> 1.25

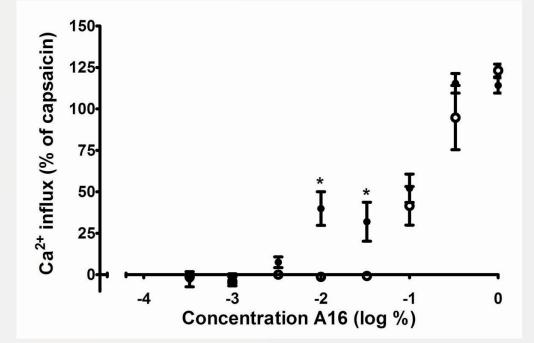
Study Design

- 20 coded samples (19 baby bath products and one adult shampoo) were supplied to Stockholm University for NociOcular testing
- All (except adult shampoo) had been clinically tested for sting
- Coded results sent to IIVS for decoding and comparison to clinical results

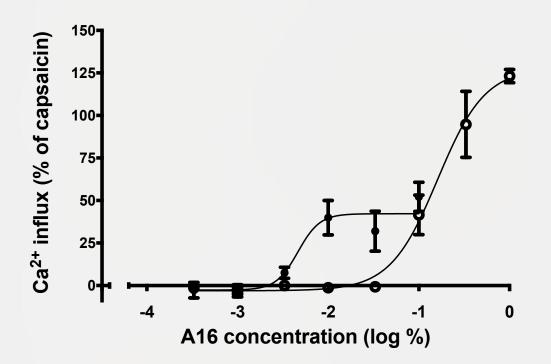


Assay Set-up

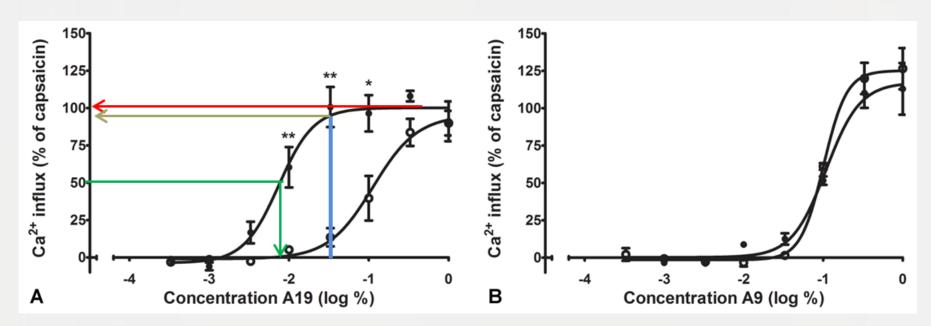
- The TRPV1 SH-SY5Y cells were seeded in 96well plates and cultured to confluency.
- Acute increases in the intracellular free Ca²⁺ level was measured in a fluorescence reader before and after addition of sample.
- The TRPV1 antagonist capsazepine was added to each concentration of the sample to confirm TRPV1-mediated Ca²⁺ influx.



Positive and negative controls



Bi-phasic response; TRPV1-specific and unspecific Ca²⁺ influx



Use TRPV1-specific response for calculations

Data and Prediction Model

Test parameter	Cut off level
Emax (% of capsaicin response)	≥24
EC50 (concentration inducing 50% effect of Emax)	≤ 0.03
Effect at the concentration 0.032%	≥ 22

Study Results

Test Sample	EC50±S.E.M. (%)	Emax±S.E.M. (% of capsaicin effect)	Effect at 0.032% ±S.E.M. (% of capsaicin effect)	Stinger according to NociOcular	Human Ocular Instillation Test for Sting (Yes/No)
A1	0.0077±0.0017	60±23	54±24	Yes	Yes
A2	N.C.	<20	<10	No	No
A3	N.C.	<20	<10	No	No
A4* (+ control)	0.0029±0.0015	159±41	144±38	Yes	Yes*
A5	0.29±0.027	1227±16	95±19	No	No
A6	N.C.	<20	21±15	No	No
A7	N.C.	<20	<10	No	No
A8	N.C.	<20	<10	No	No
A9	N.C.	<20	<10	No	No
A10	0.0091±0.0009	30±7	23±8	Yes	Yes
A11	0.020±0.011	105±29	75±7	Yes	No
A12	0.043±0.0016	51±15	3±3	No	No
A13	0.011±0.0011	54±21	52±24	Yes	Yes
A14	N.C.	<20	<10	Νο	Yes
A15	0.013±0.0035	87±11	79±6	Yes	No
A16	0.0056±0.003	44±17	32±17	Yes	Yes
A17	0.025±0.015	42±1	22±8	Yes	Yes
A18	0.014±0.0032	23±10	21±6	No	No
A19	0.0084±0.0032	101±23	101±23	Yes	Yes
A20 ¹ (- control)	N.C.	<20	<10	No	No

Study Results

- There was no correlation between the clinical sting results and data generated from the four sensitive *in vitro* eye irritation assays.
- 6/7 formulations that induced stinging in the human test were positive in the NociOcular assay (sensitivity= 85.7%), as was the positive control.
- 10/12 that did not induce sting in the human test were negative in the NociOcular assay (specificity = 83.3%).
- Overall accuracy ~85%

Study Conclusion

<u>Conclusion</u>: TRPV1 channel activation may be a principle mechanism for eye-stinging sensation induced by soaps and the NociOcular assay may serve as a simple bioassay to ascertain this sensory response in the eye

Editor's Choice: Using Novel In Vitro NociOcular Assay Based on TRPV1 Channel Activation for Prediction of Eye Sting Potential of Baby Shampoos Anna Forsby, Kimberly G. Norman, Johanna El Andaloussi-Lilja, Jessica Lundqvist, Vincent Walczak, Rodger Curren, Katharine Martin, and Neena K. Tierney

Toxicol. Sci. (2012) 129 (2):325-331

- Johnson & Johnson and Anna Forsby have supported transfer of assay to IIVS
 - IIVS staff training at Stockholm University
 - donation of FlexStation by &J
- IIVS has performed the assay in-house and data evaluated by Anna Forsby
- Following successful assay transfer, IIVS aims to offer this efficacy assay commercially

Future Directions

- Perform additional comparative studies
- Evaluate the ability of the assay to predict the stinging potential of other product types
- Determine if the assay may be predictive of skin and mucosal tissue stinging

Acknowledgements

Stockholm University

Anna Forsby, Johanna EL Andaloussi-Lilja, Jessica Lundqvist, Tom Gatsinzi, Helene Lindegren, Hanna Mogren, Sofia Holback, Helena Gustafsson

Stockholm University

Johnson & Johnson

Neena Tierney, Vincent Walczak, Katharine Martin, Michael Southall Johnson Johnson

CONSUMER & PERSONAL PRODUCTS WORLDWIDE Division of Johnson & Johnson Consumer Companies, Inc.

<u>IIVS</u> Rodger Curren, Lindsay Krawiec, Bizabeth Sy

Questions

Thank you for your participation!

- Answers to all questions will be provided to the participants within a few business days.
- Announcements of future webinars will be sent via email and will be advertised on our website
- Presenters:

Anna Forsby – <u>annaf@neurochem.su.se</u> Kim Norman – <u>knorman@iivs.org</u> Neena Tierney – <u>ntierne@cpcus.jnj.com</u>

Chemicals that were tested in the NociOcular assay No irritation, irritation

Compound	EC50 of	Emax (% of	In vitro	Risk class		Draize's
	Capsaicin (mM)	capsaicin)	category	(eye)	category(1)	MMAS
Carbamide/Urea	>700	36***	N	NC		
PEG 200	237	71,54	N	NC		0
Glycerol/glycerine, 86-89% purity	1008	138	N	NC	No category	1,7
DMSO	340	126	N	NC		
Ethyl 2-methylacetoacetate	1,82	71,5	M	NC	2B	18
Sodium deoxycholate	0,114	124	M	R36		
Ammonium nitrate	7,24	101	M	R36	2A	18,3
2, 6-Dichlorobenzyl chloride	2,91	83	M	R36	2A	23,8
Citric acid	0,208	91,3	М	R36	2A	
Dibenzyl phosphate	0,166	121	М	R36	2A	30
Methyl acetate	26,6	118	М	R36	2A	39,5
Pidolic acid (pyrrolidone carboxylic acid)	0,663	79,4	M	R36	2	
Ammonium lauryl sulphate	0,0218	122	l I	R36	2	30
N-lauroylsarcosine (sodium salt)	0,0572	52	M-I	R36 (R41)	1	
Cocamidopropyl betaine	0,0375**	35***	M-I	R36, R41		
Sodium lauryl sulphate (15%)	0,0186	118	I	R41	1	59,2
Sodium C12-15 pareth sulphate	0,0776	146	l I	R41		
Benzalkonium chloride (1%)	0,0507	104	I	R41	1 (2A)	45,3
Cetylpyridinium bromide (6%)	0,0275	107		R41	1	85,8
Benzoic acid	0,704	104	М	R41	1	
Lactic acid	0,368	84,6	М	R41	1	
Sodium laureth sulphate	0,0031	107		Irritaiting		30

Chemicals that were tested in the NociOcular assay No irritation, mild irritation, severe irritation

Compound	EC50 of	Emax (% of	In vitro	Risk class	GHS	Draize's
	Capsaicin	capsaicin)	category	(eye)	category(1	MMAS
	(mM))	
Carbamide/Urea	>700	36***	N	NC		
PEG 200	237	71,54	N	NC		0
Glycerol/glycerine, 86-89% purity	1008	138	N	NC	No category	1,7
DMSO	340	126	N	NC		
Ethyl 2-methylacetoacetate	1,82	71,5	M	NC	2B	18
Sodium deoxycholate	0,114	124	M	R36		
Ammonium nitrate	7,24	101	M	R36	2A	18,3
2, 6-Dichlorobenzyl chloride	2,91	83	M	R36	2A	23,8
Citric acid	0,208	91,3	M	R36	2A	
Dibenzyl phosphate	0,166	121	М	R36	2A	30
Methyl acetate	26,6	118	М	R36	2A	39,5
Pidolic acid (pyrrolidone carboxylic acid)	0,663	79,4	M	R36	2	
Ammonium lauryl sulphate	0,0218	122	I	R36	2	30
N-lauroylsarcosine (sodium salt)	0,0572	52	M-I	R36 (R41)	1	
Cocamidopropyl betaine	0,0375**	35***	M-I	R36, R41		
Sodium lauryl sulphate (15%)	0,0186	118	l I	R41	1	59,2
Sodium C12-15 pareth sulphate	0,0776	146	I	R41		
Benzalkonium chloride (1%)	0,0507	104	I	R41	1 (2A)	45,3
Cetylpyridinium bromide (6%)	0,0275	107		R41	1	85,8
Benzoic acid	0,704	104	М	R41	1	
Lactic acid	0,368	84,6	М	R41	1	
Sodium laureth sulphate	0,0031	107		Irritaiting		30