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Summary — An alternative method is shown te consist of two parts: the test system itself; and
a prediction model for converting in vitro endpoints inte predictions of in vivo toxicity. For the
alternative method to be relevant and reliable, it is important that its prediction model compo-
nent is of high predictive power and is sufficiently robust against sources of data variability. In
other words, the prediction model must be subjected to criticism, leading successful models to
the state of confirmation. It is shown that there are certain circumstances in which a new pre-
diction model may be introduced without the necessity to generate new test system data.
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Introduction

This is the report of a joint meeting of the
European Centre for the Validation of Alter-
native Methods (ECVAM) task forces on bio-
statistics and prevalidation, which took place
at ECVAM in February 1997. The aim of the
meeting was to reach consensus concerning
the development of prediction models within
the validation process for alternatives to ani-
mal testing in toxiceclogy.

The concept of validation has been greatly
developed since the two Amden Reports were
published (1, 2). A successful, and properly
conducted, validation study is now acknowl-
edged to be essential if an alternative
method is to be accepted by the regulatory
authorities. Together with work on the alter-
native test systems, some careful considera-
tion of how we are to achieve the validation
of alternative methods has been made (3).

A key advance has been the recognition
that an in vitro test system must be reliable
in two ways. Firstly, it must be possible to
demonstrate that results obtained from test-
ing individual substances in the same assay
are reproducible across multiple laboratories
and over time (2-3). Secondly, it must be
possible to demonstrate that the predictions
of toxicity from the alternative method are
reproducible across appropriately defined
sets of test substances (4). The device used to
convert results from an alternative into a rel-
evant prediction of toxicity has been called
the prediction model. Recent work has
demonstrated the importance to validation
of having a well-defined and explicit predic-
tion model prior to the start of the validation
process. In fact, such models have always
been implicit in the minds of toxicologists.
For example, without the ability to convert a
median neutral red uptake into a prediction
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of a Modified Maximum Average Draize Test
Score (MMAS; for eye irritation), there
would have been little point in first develop-
ing the neutral red assay.

An assay is considered relevant when its
scientific significance and usefulness for a
particular purpose have been established. The
establishment of significance and usefulness
is important because hazard predictions from
scientifically credible alternative methods
have a higher probability of being correct. In
effect, the assessment of relevance answers
the question, “Are the predictions obtained
from a given alternative method ‘good
enough’ for a defined purpose?”.

It can therefore be seen that an alternative
method (AM) has two main components: the
in vitro test system (TS), and the prediction
model {PM). This can be written symboli-
cally as:

AM = PM @& TS

The main argument of this article is that the
prediction model must be properly exam-
ined, as the test system is, during a valida-
tion study. This “model criticism” can lead to
“model refinement” and, hopefully, to
“model confirmation” (an approach advo-
cated by Box et al. [5]). The following sec-

tions focus on why and how this can be
achieved. Extensions to cases where alterna-
tive methods contain more than one in vitro
test system, or make use of relevant strue-
tural information about the test substances,
are also discussed.

In particular, the following questions are
addressed.

1. Since a prediction model is 2 mathemati-
cal or statistical construct (rather than a
real, physical object), how are its proper-
ties to be assessed? In particular, how can
its predictive power be examined and
tested?

2. Suppose a test system is evaluated in two
separate experiments, A and B, and in
both cases it is found to supply repro-
ducible results. The only difference
between the two experiments is in the set
of test chemicals applied to the system.
Supposing a prediction model has been
evaluated and confirmed by using the
results from experiment A, can we con-
clude that the model may also be judged
suitable for use with chemicals of the type
which were employed in experiment B?

Figure 1 demonstrates the arena in which
these questions arise, by providing a

Figure 1: A schematic representation of the role of the prediction model in an

alternative method
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schematic view of an alternative method.
To identify the toxicity of a well-defined set
of chemicals, one could choose either an in
pitro or an in vivo method. For an alterna-
tive method to be useful, the endpoint from
its test system (which must be reliably pro-
duced) must be converted by the prediction
model into an estimate of the in vive end-
point of interest. This report is concerned
with how an accurate prediction model can
best be established {question 1), and to
determine the circumstances under which
it could be used on chemicals which lie out-
side the set of chemicals upon which it has
been confirmed {guestion 2}.

The Nature of the Prediction Medel

In considering the nature of a prediction
model, we build on the work of Bruner ef al.
{4), who list the following requirements for
an adequate prediction model.

1. The specific purpose of the alternative
method must be clearly specified.

2. A definition of all possible results from
the alternative method must be sup-
plied.

3. The prediction model must be able to
specify how accurate its predictions are.

4. There must be a well-defined list of the
classes of test substances for which the
prediction model may be used. We return
to this point in greater depth in the sec-
tion Information from Various Sources.

A prediction model is likely to be a statisti-
cal or mathematical model, even if it is more
commonly expressed as an algorithm, or
rule. The term “model” is used in many cir-
cumstances and it is perhaps worthwhile to
briefly dwell on the different types which
exist. Statistical models are not physical
laws (for example, Boyle’s law linking pres-
sure and temperature) because, while they
may contain derived mechanistic relation-
ships between variables, the actual parame-
terisaton of the model relies on the fitting of
a postulated structure to experimental data,
and cannot be deduced from a set of first
principles. In particular, we are highly
unlikely to be able to derive a causal rela-
tionship between in vitro and in vivo end-
points! Thus, while chemistry and biclogy
may indicate relationships between in vivo

and in vitro endpoints, and while statistical
considerations of the nature of the endpoint
data may have [urther structural implica-
tions, the actual model used for prediction
must be derived from a conjunction of this
structure with noisy experimental data,
hence, prediction models will always have
some sources of uncertainty. For example,
an alternative method which uses a change
in the electrical resistance of rat skin to pre-
dict corrosivity may have the following pre-
diction model: “Identify any chemical for
which rat skin electrical resistance falls
beneath 5kOhms in a 24-hour period as cor-
rosive”. This initially appears to be non-
statistical; however, why choose 5kOhms
and not 6kOhms? This value is an example of
a parameter within a particular model, which
has been estimated in some way from some
{possibly prevalidation) data. Ancther exam-
ple would be the postulated relationship
between median neutral red uptake values,
which are a measure of cell viability, and the
MMAS (4). When cell viability falls below a
particular point, a certain level of eye irrita-
tion is inferred.

Note that we are not claiming that a pre-
diction model is a mere statistical construct
— the structure of the model ought to have a
rational basis with respect to the biological
phenomenocn being modelled.

Whatever the prediction model, it should
be noted that:

model = structure & parameters.

In the electrical resistance example, the
structure of the model is likely to be a logis-
tic regression (or neural network), while the
parameter is the cut-off value that separates
corrosive from non-corrosive. The value “5”
is an estimate of that parameter, and the
true value will almost certainly never be
known, even if the structure of the model is
absolutely correct. Of course, it is unlikely
that the structure of the model will ever he
more than an approximation of the truth
(that is, after all, the nature of modelling), so
it is importent that validation procedures
address these sources of prediction uncer-
tainty. In the neutral red uptake example,
the structure is a linear relationship between
NR50 values and MMAS, while the parame-
ters are the estimates of the intercept and
gradient of the line, which determine the
exact correspondence between decline in cell
viability and MMAS.
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Attempts at developing non-statistical
prediction models are likely to fzil; if no
probability distribution is postulated for a
meodel, how can there be any confidence in
the accuracy of the predictions from the
model? For example, suppose a statistician
selected a cut-off value of “26” in the elec-
trical resistance example, because this value
had worked well in experimental trials.
How could he or she then estimate the vari-
ability of predictions from the model under
repeated experimentation? This is one of
the requirements for an adequate predic-
tion model laid down by Brunmer et al. (4).
Without a statistical model, there is no way
to sensibly answer such a question, nor to
assess how robust the model is to mis-spec-
ification of these parameters. Even com-
puter-intensive methods for inference (such
as the bootstrap method, or a neural net-
work) all postulate the existence of an iden-
tifiable model,

The difficulty with model building, as
indicated above with the difference between
a statistical model and a law of physics, is
that it is a curious mixture of art and sci-
ence. Statistical science can show the best
fitting line (or hyperplane, or squiggly
curve} with respect to any number of
norms, once an underlying structural form
has been chosen. It can indicate which of
two competing models best explains a given
set of data, and can do so without recourse
to rigid linear relationships hetween the
variables, or reliance on Gaussian distribu-
tional assumptions. However, it cannot tell
us which of several competing structural
forms to prefer, nor can it tell us which vari-
ables to consider for inclusion (although it
can tell us if one is worth including after we
have chosen it). Furthermore, there are an
infinite number of models which will give
equally good fits to any one set of data; how
can we decide which one is the most correct,
or most appropriate, for any given problem?
The search for a best-fitting model is akin to
the search for quality that marks the fol-
lowing passage (6):

“To put it in more concrete terms: if you
want to build a factory, or fix a motorcycle,
or set a nation right without getting stuck,
then classical, structured, subject-ohject
knowledge, although necessary, isn’t
enough. You have to have some feeling for
the quality of the work. You have to have a
sense of what’s good.”

In other words, the prediction model needs
to have a strong biological basis as well as
being a good fit to data in the statistical
sense.

Consider the following examples, both of
which are statistical models.

1. If mean electrical resistance in three
samples of rat skin drops beneath
5kOhms in a 2-hour period, the test
chemical is corrosive.

2. If more than ten apples drop from the
tree outside my office in a 60-minute
period, the test chemical is corrosive.

We instinctively that the second model is
invalid, and that an alternative method
which employed it would not be relevant.

If the prediction model is to be at all use-
ful, the model fitting (i.e. the process of
choosing a structure and parameter esti-
mates, using available data) must have been
carried out in an appropriate manner. A cut-
off value which was chosen merely because it
“seemed effective” would not be appropriate,
as we have seen. There are, of course, many
ways to fit models (many are mentioned in
the first report of the ECVAM hiostatistics
task force [7]), but the manner in which the
fitting is carried out is not our focus here.
However, the form of the model can have a
bearing on the scope of validity of the predic-
tion model.

The Validity of the Prediction Model

By a valid prediction model, we mean one
that has sufficiently high predictive power
for the in vive endpoint of interest. The key
point is that it should be scientifically aceept-
able as well as providing a good fit to the
data, and that it should directly address the
prediction of a well-defined biological
response.

Bearing this in mind, it is possible to offer
some examples- of desirable properties for
prediction models.

Primary observations rather than regulatory
classifications

A prediction model can have the aim of pre-
dicting either a primary in vivo endpoint of
toxicity (for example, quantifiable alter-
ations of cells, tissues or organs observed in
laboratory animals or in humans), or a clas-

Prediction model validation

509

sification of toxicity decided by & regulatory
body. The electrical resistance example is
an example of the latter.

Estimates of primary ir vivo toxicity are
more desirable than estimates of regulatory
classifications, since the toxicity in a
human exposed to the chemical is a real
effect, arguably independent of regulatory
assessment. In contrast, regulatory classifi-
cations are determined by political, or at
best pseudo-scientific, considerations; they
are at least one tier removed from the pri-
mary effect of interest {note that it is not
suggested that the in vivo effects are free
from variability). Moreover, many different
regulatory classifications can be assessed
from one set of in wvivo predictions. For
example, given four neutral red uptake 50%
inhibition (IC50) concentrations for chemi-
cal X, what is the predicted probability that
testing the same chemical in the Draize eye
test will result in a corneal opacity score of,
say, two?

A prediction model designed to answer this
question is more relevant than one which
makes a prediction of the probability that
chemical X will fall into a class of foxicity
defined by a regulatory authority (for exam-
ple, that it should be classified as R36 accord-
ing to EU risk phrase designations); in any
case, this can be directly inferred from the
prediction of corneal opacity.

Mirror the toxicological mechanism as
closely as possible

The number of models which can be fitted
to a set of data is vast, even if the obviously
poorly fitting ones are discounted. To
enhance the validity of the prediction
model, it is advisable to use known chemiecal
or . biological information in choosing the
model structure. For example, consider two
continuous endpoints: the LD50 from an in
vivo experiment, and the IC50 from an ir
vitro experiment. The aim of the prediction
model is to predict LD50 values by using
IC50 values. Standard practice would be to
fit a simple linear regression to the values,
and use the estimated parameters as the
algorithm.

However, information is likely te be avail-
able on the structure of the chemicals io
which the alternative method is to apply, for
example, information regarding partition
coefficients or acid dissociation constants. It
is highly likely that incorporating such infor-

mation into the prediction model will lead to
more-effective predictions. Some work has
been done on this in the quantitative strue-
ture-activity relationship (QSAR) literature
{8), but it seems that most toxicologists view
a prediction model and a QSAR as very dis-
tinet objects, when in fact both were
designed with the same objective, i.e., to pre-
dict the activity of a chemical. A more inte-
grated modelling strategy is needed; for
example, a prediction model that utilises the
results of an in vitro test as well as structure
variables is more likely to be effective as it is
most relevant, in the sense that it utilises
more of the available information.

ECVAM is currently addressing such inte-
grated testing strategies through another
task force, while some work has been pub-
lished by Blaauboer et al. {(9) and Walum et
al. (10).

The Precision of Predictions Obtained
from a Prediction Model

We have discussed the structure and parame-
ters of a prediction model. To discuss the pre-
cision of a prediction model, both compoenents
must be examined. Precision here means a
standard of robustness in the predictions
from the model; that the predictions are (suf-
ficiently) accurate; and that well-defined esti-
mates of error for any one prediction can be
made. Checking a particular model via criti-
cism of its components will lead, hopefully, to
a confirmed prediction model.

Skructure

The structure of the prediction model is the
form of the relationship between the in vitro
and in vive endpoints. Is it a linear relation-
ship? A quadratic one? A hideously non-lin-
ear one? Note that the true structural form
can never be known, nor indeed can it always
be assumed that one true model really exists.
It is now “well-known” (11) that using the
same set of data to derive a model’s struc-
ture, and then to make inference ahout the
population from which the data came using
this model estimate, is likely to be mislead-
ing. It is therefore of benefit that the predic-
tioh model is defined before the validation
study commences. However, a well-defined
prediction model is emphatically not the
same thing as the most precise prediction
model. We return te this point below.
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Parameters

The parameters are used to index the model
~ within the family defined by its structure.
For example, if a linear relationship links in
vitro and in vive, in the form:

invivo = o + P (in vitro)

then the particular values chosen for o and 3
specify the particular form of the prediction
model. Again, note that the true values of «
and B will never be known and must be esti-
mated on the basis of existing data. It is
equally “well-known” that the more data
available (assuming that all are generated
from the same probability distribution), the
more reliable the parameter estimates. Con-
sider that a validation trial is likely to be one
of the best-designed experiments of the test
system and the prediction model. Thus, it is
not heneficial that the prediction model is
completely defined hefore the validation
study commences, because new information
in the data about the parameters is being
wilfully ignored (the precision in the para-
meters will affect widths of confidence inter-
vals and therefore judgements about
toxicity).

Can data from a validation study be used
to refine a prediction meodel once a study is
completed? The answer is “yes”, as long as
this refinement occurs after the decision on
the validity of the test system and the pre-
diction model have been made, relative to the
criteria established at the start of the study.

Post hoc prediction models: wise after the
event?

There is considerable resistance in the toxi-
cological community to the concept of post
hoce fitting of prediction models by using data
derived from the validation process itself.
This stems from the belief that validation
must be the last check before regulatory
acceptance is sought for an alternative
method and, as noted above, there are good
statistical reasons for not basing model esti-
mation and inference on the same set of
data.

However, consider the concept of valid-
ity, in particular with respect to confirming
the structure of a proposed prediction
model. Is the model sufficiently tested by
feeding in in vifro endpoints and comparing
them with in vive data? No, because a
faulty prediction model could still make

acceptable predictions, in some instances.
Indeed, it is more likely that the prediction
model considered in the validation process
is only sub-optimal, rather than completely
mis-specified. A slightly mis-specified
structure (for example, linear rather than
quadratic) is feasible if a sub-space of chem-
ical classes is used during prevalidation
(see the discussion of Figure 2 below).
Therefore, it is recommended that the vali-
dation study data are used to check the
defined prediction model by refitting a new
model and comparing it with the prediction
model. If the two are very similar {(as would
be expected), the structure of the prediction
model has to that extent been confirmed.
As Chatfield (12) said:

“The only real validation of a statistical
analysis, or of any statistical enquiry, is con-
firmation by independent observations
(Anscombe [13], p. 6}, and so model valida-
tion needs to be carried out on a completely
new set of data.”

Further, consider our comments on paramet-
ric uncertainty: if the chosen prediction
model is considered to be structurally suit-
able, there still remains the problem of what
to do about the information contained in the
validation study data. Is it to be ignored?
Since it can easily be shown that this would
lead to more inaccurate predictions, surely
this is not an option? Rather, it should be
possible to refine a prediction model by
updating the parameter estimates which
index it within its (now confirmed) struc-
ture. Perhaps a suggestion for regulatory
authorities can be made. As well as updating
published protocols for animal experiments,
in vitro techniques should also be subjected
to periodic revision (there are a great many
reasons why this should be the case, of which
reducing parametric uncertainty in the pre-
diction model is but one).

What should happen if the post-study
prediction model is clearly superior?

It could happen that the post-study predic-
tion model (PM,) is not only structurally dif-
ferent to the existing prediction model {PM,)
but that, on the basis of the validation study
data, it is also superior. What action should
then be taken? One cannot simply replace
PM,; with PM, and declare the alternative
method is validated. It has already been
noted that it is unsafe to fit and assess a
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Figure 2: Prevalidation and wvalidation data sets with existing and post hoc
prediction models
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model with the same set of data. One way
forward would be to confirm the superiority
of PM, by applying it to the prevalidation
data which should have been gathered before
the full validation exercise commenced (14).
This is real cross-validation; completely new,
independent observations are used to con-
firm a postulated model structure. Alterna-
tively, of course, classical cross-validation
could be employed (15), by using various ran-
dom subsets of the validation or prevalida-
tion data sets to form new test sets for the
new models.

Note that it is not the case that, because
PM, was found to fit adequately, there is a
“fault” with the prevalidation data. Consider
Figure 2, which shows the case where the
prevalidation data set suggests PM,, a
straight line fit, while with the addition of
the validation study data set, a more appro-
priate structure — a curve — is suggested.
The data were generated as follows: initially,
the validation set was simulated to follow a
true quadratic curve; then a subset of 20
chemicals were selected at random to be used
as the prevalidation data set. On that set,
both a straight line and a quadratic line were
fitted. There is nothing wrong with the
prevalidation data, but the important point
is that PM,, the curved line, provides an ade-
quate fit to both sets, while PM,, the straight
line, is only able to accurately describe the
restricted set. PM, is imbued with greater
generality and therefore provides more-pre-
cise predictions of in vivo responses.

Of course, it is often the case that the
prevalidation data set is the much larger of
the two, in which case the labels on the dia-
grams in Figure 2 are reversed. However, the
situation represented here can and does
oceur in the practice of validation studies, as
some of the present authors can attest.

Conclusions concerning precision and
validity

The post-study refinement of a published
prediction model is perfectly acceptable, if it
serves only to confirm the stated structure of
the model and reduce uncertainty about
parameter estimates, i.e., the refinement is
carried out to increase the precision of the
predictions from the model. If the structure
of the post-study prediction model is very dif-
ferent, however, it is not advised that it
merely replaces the extant one. Rather, very
strong evidence against prediction model

validity has been observed (even if the pre-
dictions of in vivo toxicity appear accept-
able), and to this extent the prediction model
being tested is a failure. I{Hfact, whereas
moving from the linear to the gquadratic
curve in Figure 2 is not such a dramatic shift,
moving from a functional relationship such
as that posited in Figure 2, to a highly non-
linear relationship requiring computer-
intensive techniques of estimation, for exam-
ple, could constitute a significant structural
change. A possible way forward is to confirm
the success of the new prediction model by
applying it to existing prevalidation data,
rather than to begin the entire validation
process again from the beginning. Deciding
whether a prediction model is worthy of
refinement, as opposed to being completely
structurally useless, should come under the
aegis of the management team of a particu-
lar study. Such management teams are rec-
ommended to a priori draw up a table of
minimum acceptable rates of correct classifi-
cations from the prediction models in their
study, and to use this for comparison of the
experimental results.

Information from Various Sources

The questions posed in the Introduction to
this article can now be answered. Our dis-
cussion has repercussions for the case where
the post-study prediction model is superior
to that entered into the validation exercise,
and for alternative methods which use more
than one test system.

Consider the case where a test system has
been shown to be reliable, giving highly
reproducible results, in two separate “exper-
iments” (experiments A and B; an experi-
ment in this context means an exercise
where a set of test chemicals are put through
the test system in a manner concordant with
the system’s protocol).

Now suppose that either there was no pre-
diction model in experiment B (perhaps the
test system was still under development), or
the prediction model which was used was
found to be inadequate. In experiment A, not
only was the test system good, but the pre-
diction medel (PM,) was successful. Clearly,
the alternative method defined by the con-
junction of PM; and test system has been
validated for chemicals which were tested in
experiment A. However, in order to have an
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experimental method which covers the
entire range of chemicals tested in both
experiments, are further chemical tests
needed to validate the conjunction of PM,
with those classes of chemicals which were
used in the assessment of the test system in
experiment BY?

One of the requirements for a prediction
model is that it specifies the classes of chem-
icals upon which it may validly be applied.
Therefore, the alternative method has been
validated for the classes of chemicals in
experiment B which are common to those
tested in experiment A.

We are assuming that the only pessible dif-
ference between experiments A and B is in
the choice of chemicals (they followed identi-
cal protocols). For example, experiment A
may have tested only neutral organic and
surfactant chemicals, while experiment B
may have tested neutral organics and phe-
nols. There are, therefore, five possibilities to
consider for the relationship between A and
B, shown as Venn diagrams in Figure 3.

In Figure 3a, there is no overlapping of the
chemical classes tested in the two experi-
ments, while Figure 3b represents the case
where experiment B tests are a subset of the
classes of experiment A. In Figure 3¢, there
is an intersection of chemicals tested, but
still some different testing in both experi-
ments. Figure 3d is the reverse of Figure 3b;
the classes in experiment A were a subset of
those in experiment B. Finally, in Figure 3e,
the classes tested in both experiments were
identical. Note that identical classes do not
imply identical test substances (as an aside,
it can be envisaged that QSAR methodology
could be brought to bear in determining
which chemicals belonged to different
classes).

To return to the equation, AM = PM, @ TS,
consideration of these diagrams demon-
strates the extent to which the alternative
method has been validated, that is, the range
of chemical classes over which the alterna-
tive method ecan be said to be reliable and
relevant. If the situation is as shown in Fig-

Figure 3: Venn diagrams of the five possible relationships between chemicals
tested in hypothetical experiments A and B
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a) Chemical classes in experiments A and B are mutually exclusive; b) chemical classes from
experiment B are a subset of chemical classes from experiment A; c) chemical classes from
experiments A and B intersect; d} chemical classes from experiment A are a subset of chemical
classes from experiment B; and e) chemical classes in experiments A and B are identical.

A = chemical classes from experiment A; B = chemical classes from experiment B; and E =

all chemicals.
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ure 3e, the alternative method has been as
well-validated as if a special study had been
carried out for testing PM, and the chemicals
which were used in experiment B in unison,
for the prediction model was tested on an
identical class of chemicals as has been the
test system. Conversely, if experiments A
and B took the form of Figure 3a, the alter-
native method, defined by PM; @ TS, has not
been validated for the classes of chemicals in
experiment B, as there is no intersection
between the classes of chemicals in the two
experiments.

In general, if a prediction model is vali-
dated in an experiment, independently of
another involving the same test system, the
alternative method defined by the juncture
of the prediction model and the test system
can be said to have been validated where the
chemical classes from the two experiments
intersect. This can be termed the “scope of
validity” for the alternative method. This is
perhaps a complicated manner in which to
state the obvious!

Now let us consider the following post-
study scenario. Suppose that there are two
test systems, TSy and TSy, which are (per-
haps radically) different in their scientific
basis, but which are both designed to be cou-
pled with prediction models that have a com-
mon ir vive endpoint. Suppose that both TSy
and TSy were found to be reliable in the val-
idation study, but their associated prediction
models have not been very successful in pre-

dicting in vivo toxicity. However, a post-
study prediction model, PMyy, has been
found, which utilises endpoints from both
TSy and TSy and which is successful when
applied to the validation data. This is encour-
aging, but once again the problem of over-
fitted models is raised: PMyy cannot be
defined and evaluated on the same (valida-
tion) data set. Recourse can be made to the
prevalidation data. There should be a good
stock of this for TSy and TSy, which can be
used to confirm post-study PMyy. The dis-
cussion on chemical class intersection com-
pletes the validation procedure. The new
alternative method, AMyy, is defined by:

AMyy = PMyy ® TSy ® TSy

This is validated for chemicals belonging to
the intersection of the chemical classes used
in the prevalidation and validation of TSy
and TSy,

In Figure 4, both the original alternative
method for only TSy and PMy, and the new
AMjyy, are represented. Figure 4a is an exam-
ple of the most straightforward alternative
method, built from one test system and one
prediction model. Figure 4b is a representa-
tion of the more complicated AMyy. The
Venn diagram in Figure 5 represents the
scope of validity for AMyy, that is, the shaded
intersection of the two sets of test chemicals.

Such diagrams are useful devices for
demonstrating the structure of any particu-
lar alternative method. A validation trial

Figure 4: A schematic represeniation of alternative methods

a)

FM

C—
TS/

AM,

b)

PM

i \
TS i'Ts” /

X Y

AM

xy

a) Alternative method X (AM,), consisting of test system X (T'S,) and prediction method X

(PM).

b) New alternative method XY (AM), consisting of test systems X and Y (TS, TSy) and a new

prediction model (PM,,).
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Figure 5: Venn diagram of the scope of
validity for alternative method XY
(AMy)

Shaded area shows scope of velidity for
AM,,. AMy, is schematically shown in
Figure 4b.

X = chemical class X; Y = chemical class ¥;
and E = all chemicals.

could choose to investigate one or other
arm of the alternative method (or both at
once), as long as it is made clear, at the very
beginning, to which arm the results will

apply.

Conclusion

It is as important to validate the prediction
model as it is to establish the reliability of a
test system, for a precise and robust predic-
tion meodel is required to give relevance to
the alternative method, defined as the con-
junction of the test system and the predic-
tion model. If the performance of the
alternative method meets the criteria
defined prior to the start of the study, it
should be considered valid. If further consid-
eration of new data shows that small adjust-
ments in the parameters of a valid model will
improve the precision of predictions, post-
study refinement is acceptable.

If the alternative method fails to meet the
criteria, the method must be declared not
valid. If this occurs, but results from the
study indicate that modifications (to the
structure) of the prediction model could
improve the predictive capacity, these
changes must be defined. The alternative
method can then be retested in a subsequent
validation study using an independent set of
test chemicals. Whether the data come from

the prevalidation test sets or anywhere else
is irrelevant as long as they are independent
of the data set used to develop this new pre-
diction model; thus, further laboratory work
involving the test system might not be
required.
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