Development of a method to measure cigarette, e-cigarette and tobacco heating product skin staining

Annette Dalrymple¹, Sarah Corke³, Devin Sheehan², Holger Behrsing² and Steven Coburn¹

¹British American Tobacco (Investments) Ltd, Southampton, SO15 8TL, UK
²The Institute for In Vitro Sciences, Inc., 30 West Watkins Mill Road, Gaithersburg, MD 20878
Correspondence: annette_dalrymple@bat.com

Abstract No: 2713
Poster No: P192
Meeting: SOT 2019

Introduction
Potential reduced risk products (PRRPs), such as electronic cigarettes (EC) and tobacco heating products (THP), hold great potential for reducing the risks associated with cigarette smoking.1-2
We have recently demonstrated that exposure to EC and THP aerosols in vitro results in minimal teeth staining.3
PRRPs may have additional cosmetic and hygiene benefits for consumers, such as reduced skin staining.

Skin sample preparation and exposure
Abattoir obtained porcine skin samples were prepared by clipping hair, removing excess subcutaneous fat and dermattomising to 500 to 750 µm.6
Samples (0.8 cm²) were prepared using a cylindrical biopsy punch and stored in Hanks’ Balanced Salt solution (HBSS) for 10 minutes before baseline colour measurements.
Three skin samples were incubated epidermis down, in 500 µL of test article or DMSO control for 0.25, 0.5, 1, 2, 4, 6 hours.

Colour measurement
Staining was apparent after 1 hour exposure to 3R4F PM and the mean ∆E values induced by 3R4F PM was statistically significantly (p<0.0001) higher than glo™, NVP, IFUSE II and iSwitch (Table 1).
One-way ANOVA was used to assess differences in ∆E means. The Tukey procedure was used for pairwise comparisons.

Results
Staining was apparent after 1 hour exposure to 3R4F PM and continued to increase until 6 hours (Figures 4 and 5).
After 1 hour, the mean ∆E values induced by 3R4F PM was significantly higher than glo™, NVP, IFUSE II and iSwitch (Table 1).
Staining levels for glo™, NVP, IFUSE II and iSwitch were minimal and comparable to DMSO control (Figures 4 and 5).

Conclusions
Cigarette smoke particulate matter exposure significantly increased the level of staining of the skin samples.
EC or the THPs induced little or no staining of skin samples; values were comparable to the DMSO control.
For the first time, diverse PRRPs across the risk continuum have been assessed in vitro for their impact on skin staining.
Further studies are required to assess the long-term impact of PRRP aerosols on skin staining.

References
Development of a method to measure cigarette, e-cigarette and tobacco heating product skin staining

Annette Dalrymple¹, Sarah Corke¹, Devin Sheehan², Holger Behrsing² and Steven Coburn³

¹British American Tobacco (Investments) Ltd, Southampton, SO15 8TL, United Kingdom
²The Institute for In Vitro Sciences, Inc., 30 West Watkins Mill Road, Gaithersburg, MD 20878

Correspondence: Annette_dalrymple@bat.com

Abstract

Next generation tobacco and nicotine products (NGPs) such as electronic cigarettes (EC) and tobacco heating products (THP) have reduced toxicity and hold great potential for reducing the risks associated with cigarette smoking. NGPs may also have hygiene benefits for consumers that switch to these products. In this study, the level of skin staining was assessed following exposure to a scientific reference cigarette (3R4F) and NGPs across the risk continuum; a prototype EC or a commercial THP (glo™).

Test articles (TAs) were prepared by capturing cigarette smoke or EC/THP aerosol on Cambridge filter pads followed by elution with Dimethyl Sulfoxide (DMSO). Abattoir-obtained porcine skin (ø 0.5) samples were incubated at 37°C with each TA or DMSO control for 0, 0.25, 0.5, 1, 4 and 6h. Colour readings (L*, a*, b*) were measured for individual skin samples using a Konica Minolta CM-700d Spectrophotometer and mean colour change (ΔE) for each TA compared.

The reference cigarette 3R4F TA showed the greatest colour change, which was significantly higher than the EC and THP TAs, both of which showed relatively little colour change. The mean ΔE values at 6 hrs were: 21.78 ± 2.80, 8.38 ± 2.93, 10.01 ± 2.53 and 9.23 ± 2.87 for 3R4F, a prototype EC, glo™ or DMSO respectively.

The cigarette smoke extract significantly increased the level of staining of the skin samples whereas EC or the THP TAs induced little or no staining with values comparable to the DMSO control. For the first time, diverse NGPs across the risk continuum have been assessed in vitro for their impact on skin staining. Further studies are required to assess the long-term impact on skin staining of NGP aerosols.