

Introduction

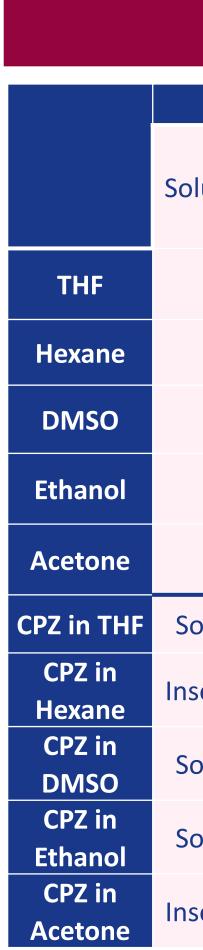
New Approach Methodologies (NAMs) are routinely used in photosafety testing to evaluate if a test compound has the potential to become more toxic upon exposure and subsequent exposure to light. Three such NAMs to address photosafety are the in chemico UV-Vis Assay, the cell-based 3T3 Neutral Red Uptake (NRU) Phototoxicity Test (PT), and the tissue-based Reconstructed human EpiDermis (RhE) Phototoxicity Test (PT), described under OECD Test Guidelines (TG) 101, 432, and 498, respectively. These dilution-based assays evaluate the test compound at multiple concentrations in solvents specified in the TGs. Additional solvents may be considered and must be thoughtfully evaluated prior to use. Evaluation of prospective solvents for photosafety testing is more nuanced because the solvents must be qualified to ensure that the novel solvent does not interfere with the assay (*i.e.*, induce phototoxicity, scavenge free radicals, quench phototoxic effect, etc.) and to demonstrate the solvent does not affect the prediction of a phototoxic reference compound. To this end, five solvents (tetrahydrofuran (THF), hexane, dimethyl sulfoxide (DMSO), ethanol, and acetone) were evaluated to understand impacts on the test systems (e.g., cytotoxicity and phototoxicity potential) and their impact on identification of a known photoirritant, chlorpromazine hydrochloride (CPZ). The solvents were chosen for their known utilities in dissolving certain chemical types, as well as accessibility and cost.

Materials and Methods

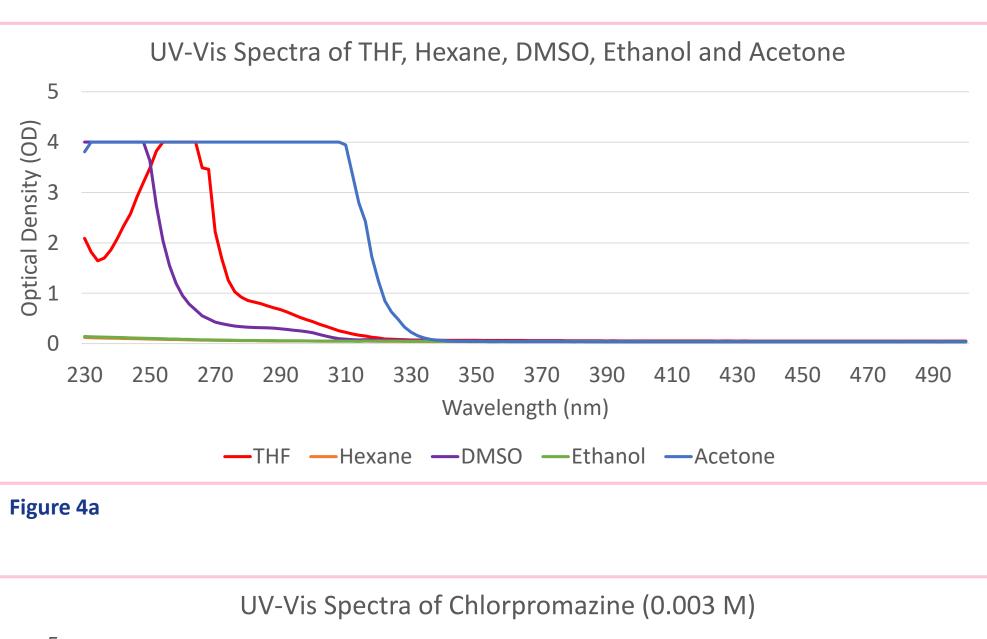
Each solvent and chlorpromazine in each respective solvent were evaluated in the UV-Vis, 3T3 NRU PT, and RhE PT, as adapted from OECD TG 101, TG 432, and TG 498, respectively. A brief summary of the methodologies and prediction models for each assay are outlined in Figures 1-3 below. In the UV-Vis assay, each solvent and CPZ in each solvent was assessed for significant absorption from 290 to 800 nm (Figure 1). Each solvent was analyzed (Figure 4a) and CPZ was diluted in each solvent at 0.003 M (Figure 4b) and the peak wavelength, absorbance (OD) values and corresponding Molar Extinction Coefficient (MEC) were determined. In the 3T3 NRU PT, solvents were prepared in Hanks' Balanced Salt Solution (HBSS), and CPZ was prepared (at least 8 concentrations) in each solvent and then transferred to aqueous buffer solution prior to addition to the 3T3 cells (Figure 2). The dose responses are presented in Figure 5a-e. The viability at each concentration was used to determine the IC₅₀ values, Photo Irritancy Factor (PIF), and Mean Photo Effect (MPE) to determine cytotoxicity and phototoxicity potential. In the RhE PT, the solvents were topically applied (neat) to the RhE tissues (Figure 3) and the Optical Density (OD) values were determined (Figure 6a). CPZ was diluted in each solvent at 0.02% and the OD values (Figure 6b) were used to calculate the % relative viability and the difference in viability between irradiated (+Irr) and non-irradiated (-Irr) exposed groups. A summary of the data are presented in **Table 1**.

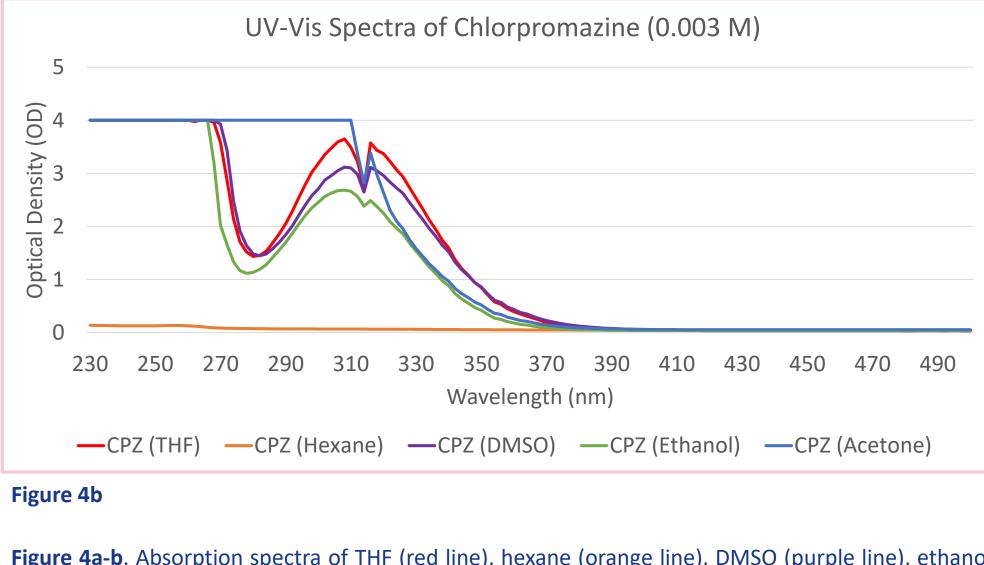
Reference

Organization for Economic Cooperation and Development (OECD) Test Guideline (101) "UV-VIS Absorption Spectra" (Spectrophotometric Method) (1981) Organization for Economic Cooperation and Development (OECD) Test Guideline (432) for the In Vitro 3T3 NRU Phototoxicity Test (2019) Organization for Economic Cooperation and Development (OECD) Test Guideline (498): In vitro Phototoxicity - Reconstructed Human Epidermis Phototoxicity test method (2023)


Approaches to Evaluation of Solvents for use in Photosafety Testing

Cantrell, K., Bouchard, K., Hilberer, A.


Institute for *In Vitro* Sciences, Inc., Gaithersburg, MD USA


		^ - An IC₅₀								
ed		Table 1: S								
	Prediction			Extinction Coefficient (MEC)						
	Significant Absorption (29	0-700 nm)	MEC	≥ 1000 L mol-1 cm-1	5 -					
	Absorption not Significant (2	Absorption not Significant (290- 700 nm) MEC < 1000 L mol-1 cm-1								
	The absorption of the solve nominal zero value.	nt should not v	ary mor	re than ± 0.05 from the	Optical Density (OD)					
	Interpretii	ng Results for O	ECD TO	6 432	0 = 23					
	Prediction	PIF		MPE	Figure 4					
)	No Phototoxicity	PIF < 2	or	MPE < 0.1						
	Equivocal Phototoxicity	$PIF \ge 2 \text{ and } < 5$	or	MPE ≥ 0.1 and < 0.15						
	Phototoxicity	PIF ≥ 5	or	MPE ≥ 0.15	5					
					ensi:					
	Solvents used must be reconcentration of the test co OD -Irr									
	concentration of the test co				0 -					
	concentration of the test co OD -Irr		nt comp	parison >80% OD +Irr/	0 23 Figure 4 Figure 4					
	concentration of the test co OD -Irr	ompound); Solver	nt comp	parison >80% OD +Irr/	0 23 Figure 4 (green li					
	concentration of the test co OD -Irr Interpreti	ompound); Solver	DECD TO	oarison >80% OD +Irr/ G 498	0 23 Figure 4 Figure 4 (green li					
	concentration of the test co OD -Irr Interpreti Prediction	ompound); Solver ng Results for C Viabi <30% at any	DECD TO	G 498 – Viability -Irr	0 23 Figure 4 (green li					
	concentration of the test co OD -Irr Interpreti Prediction No Phototoxicity	ompound); Solver ng Results for C Viabi <30% at anv 30±5%	DECD TO lity +Irr y concer at only	G 498 – Viability -Irr htration (up to 10%)						
n	concentration of the test co OD -Irr Interpreti Prediction No Phototoxicity Equivocal Phototoxicity	ompound); Solver ng Results for C Viabi <30% at anv 30±5% ≥30% in a cal, borderline, o	DECD TO DECD TO lity +Irr y concer at only at least o or uncle	arison >80% OD +Irr/ G 498 - Viability -Irr htration (up to 10%) 1 concentration one concentration ear results should be	0 23 Figure 4 Figure 4 (green li					

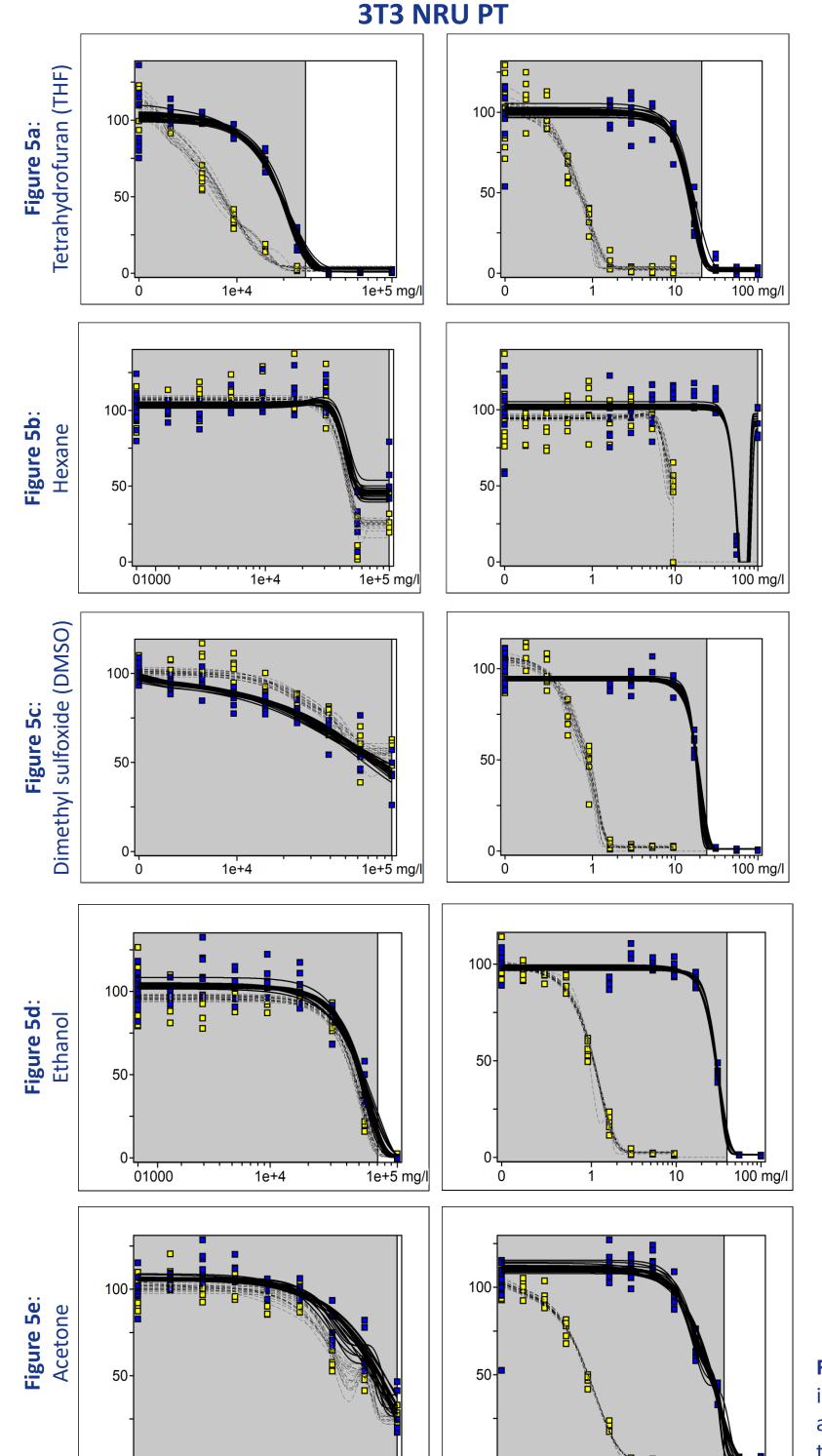
We acknowledge the lab team at IIVS who conducted the experimental trials to support this poster: Tara Supit, Megan Madrid, Kimberly Tran, Georgia Price and Jarett Kwiatek

NA – Not Applicable; ND – Not Determined; ⁱ - The spectrophotometer maximum absorbance was 4.0; * - Value is the average of two replicates; + - One replicate produced the above results, however this peak was not present in the second replicate and therefore inconclusive; Cytotoxicity- insufficient viability to analyze L) value could not be determined; therefore, the IC₅₀ value was presented as greater than the highest dose tested mary of Results for solubility, concentrations tested (if applicable), and relevant data for each solvent and CPZ dilution in each assay. Prediction models for each assay can be found in Materials and Methods. **RhE PT**

Absorption spectra of THF (red line), hexane (orange line), DMSO (purple line), ethanol and acetone (blue line) from 230 to 490 nm. Absorption (presented as optical density, solvent (4a) and CPZ at 0.003 M in each solvent (4b).

ity plays a critical role in dilution based assays, and solvent selection can impact the overall result. Additional considerations in solvent selection are required for photosafety assays due to potential for solvents to become photoreactive, with the incorporation of additional exposure conditions utilizing irradiation, and in an understanding with the assay requirements of sufficient viability in comparing responses in the presence and absence of irradiation. To this end, we evaluated five prospective solvents in three photosafety NAMs to understand their compatibility with the test systems. Our work demonstrates that when full solubility cannot be achieved, photoirritancy potential can still be predicted. In considering prospective solvents, preliminary evaluations must be done to confirm compatibility with each test system to ensure the solvent does not enhance or diminish effect, and subsequently, to ensure test method ability to appropriately predict phototoxicity potential.

1e+5 mg/l

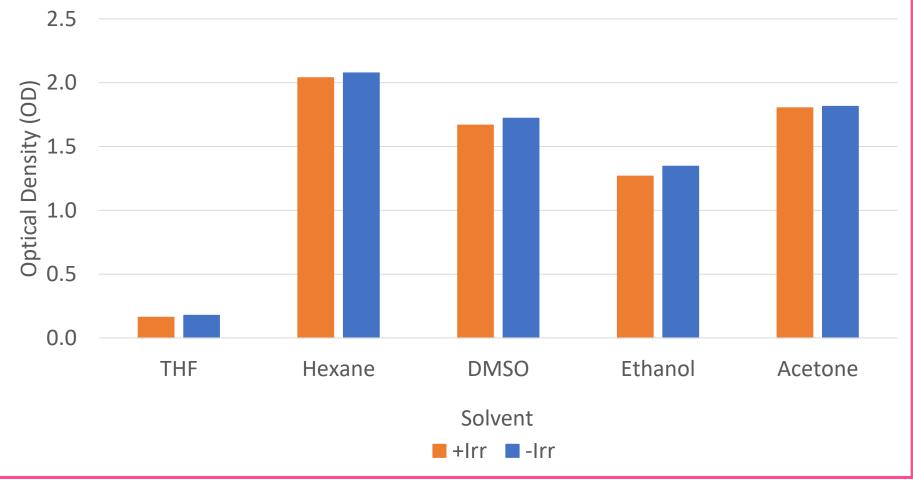

01000

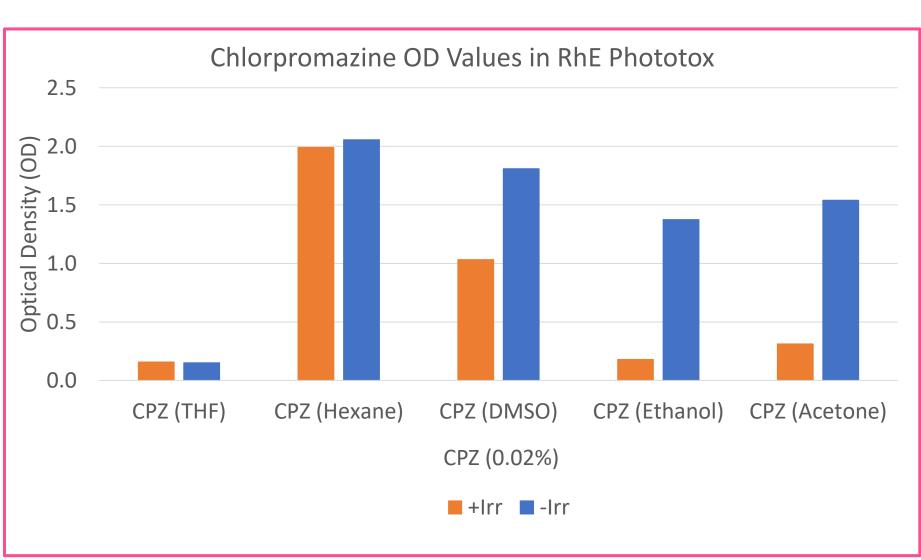
1e+4

Results

UV-Vis (OECD TG 101)					3T3 Phototoxicity (OECD TG 432)							RhE Phototoxicity (OECD TG 498)						
Solubility	Conc. (M)	Peak Wavelength (nm)	Peak OD value*	Peak MEC value*	Absorption?	Solubility	Conc. (µg/mL)	IC₅₀ (+Irr) (µg/mL)	IC₅₀ (-Irr) (µg/mL)	PIF Value	MPE Value	Phototoxic?	Solubility	Conc. (%)	OD value (+Irr)*	OD value (-Irr)*	% Viablility difference	Phototoxic?
NA	NA	290	0.675	NA	Yes	Soluble	3725-100000	78589	19308	2.46	0.138	Probable	NA	NA	0.162	0.177	NA	No - Cytotoxic
NA	NA	290	0.064	NA	No	Insoluble	1633-100000	47107	>100000^	ND	-0.014	No	NA	NA	2.04	2.08	NA	No
NA	NA	290	0.294	NA	Yes	Soluble	3725-100000	>100000^	80112	ND	-0.034	No	NA	NA	1.67	1.72	NA	No
NA	NA	290	0.057	NA	No	Soluble	1633-100000	45631	51659	1.13	0.060	No	NA	NA	1.27	1.35	NA	No
NA	NA	~230-308	>4.0 ⁱ	NA	Yes	Soluble	1633-100000	47788	70166	1.55	0.046	No	NA	NA	1.80	1.82	NA	No
Soluble	0.003	308	3.64	4271	Yes	Insoluble	0.156-100	0.700	15.2	21.7	0.544	Yes	Soluble	0.02%	0.158	0.151	17.6%	No - Cytotoxic
nsoluble	0.003	290	0.014	16.8	No	Insoluble	0.156-100	>9.53^	52.0	ND	0.278	Yes	Insoluble	0.02%	1.99	2.06	1.40%	No
Soluble	0.003	308	3.09	3625	Yes	Soluble	0.156-100	0.848	18.0	21.3	0.450	Yes	Soluble	0.02%	1.03	1.81	43.2%	Yes
Soluble	0.003	308	2.60	3049	Yes	Soluble	0.156-100	1.05	29.3	28.1	0.553	Yes	Soluble	0.02%	0.179	1.37	96.8%	Yes
nsoluble	0.003	316+	3.32+	3896+	Inconclusive+	Soluble	0.156-100	0.908	24.9	27.4	0.700	Yes	Soluble	0.02%	0.313	1.54	67.5%	Yes

UV-Vis Results




Conclusions

Our findings support that the five solvents evaluated may not be fully compatible with all test systems, but have demonstrated utility within individual test systems. THF showed significant absorption in the UV-Vis assay, produced probable phototoxicity in the 3T3 NRU PT, and resulted in cytotoxicity in the RhE PT method, and therefore is not a suitable solvent for these test systems. Hexane, a non-polar solvent, is promising for UV-Vis for its ability to solubilize more complex test compounds, but was not a suitable for solubilization of CPZ in the 3T3 NRU PT (variable responses) and RhE PT (not correctly predicted at 0.02%). Although DMSO and acetone showed some absorption in the UV-Vis assay, they were suitable for the 3T3 NRU PT and RhE PT assays. Ethanol did not have significant absorption in the UV-Vis assay, was suitable for the 3T3 NRU PT and RhE PT (but resulted in lower OD values).

Abstract 4238/ P787

RhE Phototox Solvent OD Values

Figure 6b

Figure 6a

Figure 6a-b. Comparison of the OD values of each solvent in the presence (orange bar) and absence (blue bar) of irradiation. The OD values of tissues exposed to each solvent alone (6a) and of tissues exposed to 0.02% CPZ prepared in each solvent (6b).

Figure 5a-e. 3T3 cell dose responses in the presence (yellow boxes) and absence (blue boxes) of irradiation as % relative viability (y-axis) over concentration (x-axis). Each solvent was prepared in aqueous diluent (HBSS) at multiple concentrations (left panels) and then each solvent was used to prepare CPZ with dose responses (right panel). Graphics generated from Phototox 2.0 1 10 100 mg/l software (OECD).