Read this article by IIVS study director Dr. Gertrude-Emilia Costin and biologist Asha Shravanthi Pidathala in the June 2017 issue of Eurocosmetics. The article examines modern, relevant, and reliable in vitro testing strategies using pigmented tissue models that assess the capacity of ingredients and formulations that impact skin tone.
Dermal | Pigmentation & Melanogenesis | Cosmetic & Personal CareOn 8-10 December 2014, IIVS organised a workshop conference, entitled Assessment of In Vitro COPD Models for Tobacco Regulatory Science, to bring together stakeholders representing regulatory agencies, academia, industry and animal protection, to address the research priorities articulated by the FDA-CTP. Specific topics were covered to assess the status of current Assessment of In Vitro COPD Models for Tobacco Regulatory Science technologies as they are applied to understanding the adverse pulmonary events resulting from tobacco product exposure, and in particular, the progression of chronic obstructive pulmonary disease (COPD). The four topics covered were: a) Inflammation and Oxidative Stress; b) Ciliary Dysfunction and Ion Transport; c) Goblet Cell Hyperplasia and Mucus Production; and d) Parenchymal/Bronchial Tissue Destruction and Remodelling.
Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting adverse effect experienced by cancer patients. Advancements in mechanism-based risk mitigation and effective treatments for CIPN can be aided by suitable in vitro assays. To this end, we developed a multiparametric morphology-centered rat dorsal root ganglion (DRG) assay.
The personal care industry is focused on developing safe, more efficacious, and increasingly milder products, that are routinely undergoing preclinical and clinical testing before becoming available for consumer use on skin. In vitro systems based on skin reconstructed equivalents are now established for the preclinical assessment of product irritation potential and as alternative testing methods to the classic Draize rabbit skin irritation test. We have used the 3-D EpiDerm™ model system to evaluate tissue viability and primary cytokine interleukin-1α release as a way to evaluate the potential dermal irritation of 224 non-ionic, amphoteric and/or anionic surfactant-containing formulations, or individual raw materials. Full article available to full and paid subscribers of ATLA.
Corrositex | Dermal | Inflammatory Cytokine Expression | Irritation Screening | Pigmentation & Melanogenesis | Skin Corrosion Test | Skin Irritation Corrosion Screening | Skin Irritation Test | Skin Sensitization | UV Induced ToxicityWith a mandate to evaluate the dynamics of pulmonary exposure to inhaled materials such as tobacco-based products, researchers are employing complex, human, three-dimensional pulmonary models. Human reconstructed airway (RHuA) tissues present a platform that more closely resembles airways in vivo. Grown at the air–liquid interface (ALI), RHuA tissues offer apical and basal compartments that allow flexibility in modeling physiologically relevant exposures and provide sampling location-specific results. Read the full article.
Acute Respiratory Toxicity | Chronic Respiratory Toxicity | Ciliary Beat Frequency | Goblet Cell Hyperplasia | Inflammatory Biomarker Profiling | Respiratory Toxicology | TobaccoVitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. Read the full article.
The constitutive color of human skin varies widely across the globe, from the very pale as in Celtic skin to the very dark present in regions such as sub-Saharan Africa. There is a biologic player “hard at work” producing the pigments that generate great variations in human skin color and is the protagonist of this article. It is the melanocyte. Read the full article.
The development and validation of scientific alternatives to animal testing is important not only from an ethical perspective (implementation of 3Rs), but also to improve safety assessment decision making with the use of mechanistic information of higher relevance to humans. To be effective in these efforts, it is however imperative that validation centres, industry, regulatory bodies, academia and other interested parties ensure a strong international cooperation, cross-sector collaboration and intense communication in the design, execution, and peer review of validation studies. Read chapter.
New toxicology test methods, especially those using in vitro methods, are continually being developed. Some are used by industry for screening purposes; others are eventually validated for regulatory use. However, for a new test method to be firmly adopted by industry it must be readily available, generally through an in-house industry laboratory, an academic laboratory, or a contract research organization. Read chapter.
Source: IIVS Workshop, April 4-6, 2016 See also Assessment of In Vitro COPD Models for Tobacco Regulatory Science: Workshop Proceedings, Conclusions and Paths Forward for In Vitro Model Use from our Dec. 2014 workshop.
Acute Respiratory Toxicity | Chronic Respiratory Toxicity | Ciliary Beat Frequency | Goblet Cell Hyperplasia | Inflammatory Biomarker Profiling | Respiratory Toxicology | Tobacco