This new training video explores a cell-based method for assessing Phototoxicity — or the potential for chemicals to cause damage after being exposed to light. The method is used widely around the world by many industries, including the cosmetics and pharmaceutical sectors. Disclaimer: Please note that the procedures shown in this video were for demonstration ...
3T3 Neutral Red Uptake | Phototoxicity | Cosmetic & Personal Care | Fragrance & Flavors | Pharmaceutical | alternative methods | Alternative Testing Methods | animal alternatives | NRU | phototoxicityThe use of non-whole animal test methods transforms the way regulatory requirements are applied in preclinical testing. Recent global regulatory initiatives emphasize the importance of transitioning to human relevant assays and test systems that do not use animals. When these methods are moved from research into the regulated arena, GLP principles must be followed. The GLPs were originally written in the 1970s, when the vast majority of regulated research was performed using animals as the test system. Current innovative, alternative test systems include ex vivo tissues, manufactured biological systems, three dimensional tissue constructs, and cell cultures maintained in dynamic flow bioreactors. Each type of alternative test system raises new quality and compliance points to consider when used within a regulatory context. Just as the applications of these methods have advanced with regulatory acceptance, the quality control and compliance of these test systems must also progress.
Agro/Petrochemical | Cleaning Products | Cosmetic & Personal Care | Fragrance & Flavors | Household & Consumer Products | Medical Devices | Occupational Safety & Industrial Hygiene | Pharmaceutical | Specialty Chemical | TobaccoThis poster provides a snapshot of pre-college teachers (46) within the U.S.—gauging their knowledge and familiarity of the 3Rs and non-animal testing methods (i.e. in vitro methods), initiative to address the topic in the classroom, and their students’ level of interest in the topic. While recognizing the ethical considerations related to animal experimentation, the current generation of teachers and students are also eager to understand the relevance, reliability, and reproducibility of in vitro methods as the modern wave of technologies in toxicology, and possible replacement of animal use for testing purposes. Our data indicate an education field eager to learn about new concepts that might impact our daily activities in an ethical way, and to get up to speed with advances in science.
In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed ‘modified risk’. On April 4-6, 2016, IIVS convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. This report includes the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapor exposures. Full article available to full and paid subscribers of ATLA.
Acute Respiratory Toxicity | Chronic Respiratory Toxicity | Goblet Cell Hyperplasia | Pulmonary Models | Respiratory Toxicology | TobaccoToxicology testing platforms represent the basis of the human health risk assessment process that determines whether a material or product may induce harm to humans upon exposure. Historically, safety assessment of raw ingredients or finished formulations has been performed using animal-based test methods (in vivo) that provide whole organism responses to toxicants. Due to the large number of products launched by industry continuously, modern toxicology shifted in recent years towards the use of novel, fast and reliable alternative methods, ranging from in silico to in chemico or in vitro, of which some are validated for regulatory purposes. The manuscript also addresses emerging technologies in the form of “organ/body-on-a-chip” platforms which announce to be instrumental in allowing alternative systems to in vivo models to assess systemic toxic effects induced by chemicals. Read the full article.
In VitroAddressing uneven skin tone often associated with photo-aging is a key area of interest in the cosmetic industry. The design of novel, safe, and efficacious actives and ingredients capable of inducing subtle changes in skin tone can be accomplished using modern, relevant and reliable pre-clinical testing strategies prior to clinical assessment. During this one-hour webinar, IIVS Study Director...
Pigmentation & Melanogenesis | Cosmetic & Personal CareRead this article by IIVS study director Dr. Gertrude-Emilia Costin and biologist Asha Shravanthi Pidathala in the June 2017 issue of Eurocosmetics. The article examines modern, relevant, and reliable in vitro testing strategies using pigmented tissue models that assess the capacity of ingredients and formulations that impact skin tone.
Dermal | Pigmentation & Melanogenesis | Cosmetic & Personal CareThree regulatory accepted in vitro assays were evaluated in a proof-of-concept project to determine skin sensitization potential of electronic cigarette liquids (eliquids). These assays measure molecular initiating events and initial cellular responses prescribed in the OECD Integrated Testing Strategy (ITS) describing key events in the adverse outcome pathway (AOP) leading to skin sensitization.
Acute Respiratory Toxicity | Chronic Respiratory Toxicity | Goblet Cell Hyperplasia | Pulmonary Models | Respiratory Toxicology | TobaccoOn 8-10 December 2014, IIVS organised a workshop conference, entitled Assessment of In Vitro COPD Models for Tobacco Regulatory Science, to bring together stakeholders representing regulatory agencies, academia, industry and animal protection, to address the research priorities articulated by the FDA-CTP. Specific topics were covered to assess the status of current Assessment of In Vitro COPD Models for Tobacco Regulatory Science technologies as they are applied to understanding the adverse pulmonary events resulting from tobacco product exposure, and in particular, the progression of chronic obstructive pulmonary disease (COPD). The four topics covered were: a) Inflammation and Oxidative Stress; b) Ciliary Dysfunction and Ion Transport; c) Goblet Cell Hyperplasia and Mucus Production; and d) Parenchymal/Bronchial Tissue Destruction and Remodelling.